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Fusion

thehustle.co

Nuclear dynamics 

Shutterstock/OSweetNature



Neutron-induced fission

www.youtube.com/user/jordi3736
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Breakup, capture, and fusion

Phys. Rep. 845, 1 (2020)
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Astrophysical reactions

AAPPS Bulletin 31, 18 (2021)
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Relativistic heavy ion collsions
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Time-dependent Schrödinger equation 

Let us consider a Hamiltonian H that does not vary with time.  
The time-dependent Schrödinger equation tells us that the wave 
function evolves as

We can solve by exponentiating

In classical computing we can compute as 
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We can decompose the initial wave function in terms of the energy 
eigenstates 

Since energy eigenstate evolves with a complex phase determined 
by its energy, we have 

Let us consider the normalized energy eigenstates of H,
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This is quite different from Euclidean time evolution

We see that the dynamics is complicated.  We get different 
oscillations for each energy eigenvalue.  For general dynamics, we 
need to be able to store vectors with the full dimension of the linear 
space.

In Euclidean time evolution we instead get
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The exponential of the kinetic energy term gives a diffusion operator, 
and we can calculate the Euclidean time evolution using quantum 
Monte Carlo simulations. 

For Euclidean time evolution, the energy eigenstate decomposition 
gives

The Euclidean time evolution is dominated by low-energy states.  

None of these simplifying features occur for real time evolution. 
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We consider the Hamiltonians that we can construct based on sums 
of single-qubit Pauli operators and products of Pauli operators on 
two different qubits

Spin model Hamiltonians

We start with single qubit Hamiltonians of the form
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Because the square of each Pauli matrix equals the identity, we can 
exponentiate the Pauli matrices as

In general, we have
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On the IBM devices, the X, Y, Z rotation gates are defined as 

Also on the IBM devices, the general U3 gate is defined in terms of 
Euler angles

The overall phase factor is irrelevant since it is not observable.  If we use 
the phase to set the determinant to 1, this corresponds to a general 
element of the Lie group SU(2).  This is a manifold with 3 dimensions.
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We now consider two-qubit systems.  We use the basis ordering

Let us first consider the product of Z gates on two qubits
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Similarly, the product of X gates on two qubits is

The product of Y gates on two qubits is
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It turns out that X1X0, Y1Y0, Z1Z0  all commute with each other

Similarly
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CNOT gates

+
target

control

input (c, t) output (c, t)

00 00

01 01

10 11

11 10

+

q0

q1

q0

q1

+
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If we apply Hadamard gates on both qubits, we get

We note that
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q0

q1

+

We can therefore switch the roles of the control and target qubits 
for the CNOT gate using the product of Hadamards on the qubits 
before and after

+

q0

q1

H

H

H

H
=



Unitary operators on two qubits

The set of 4 × 4 unitary matrices corresponds with the Lie group 
U(4).  If we use the overall phase, which is unobservable, to set the 
determinant to 1, we get the Lie group SU(4).  This is a manifold 
with 15 dimensions.

Up to an overall phase, we can represent any 4 × 4 unitary matrix as 

+

q0

q1

U
q0

q1

A3

A4

A1

A2

=

Kraus, Cirac, PRA 63, 8 (2001)
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Where we define

=
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q0

q1

q0

q1

+

+

+

We can write the circuit as

Smith et  al., npj Quant. Info. 5 106 (2019)



When one of the parameters is zero, the corresponding expressions can 
be simplified.  For example,

=
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q0

q1

Smith et  al., npj Quant. Info. 5 106 (2019)

q0

q1

++

In this case, the circuit has the form



Trotter-Suzuki approximations

The Baker-Campbell-Hausdorff formula says that if 
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then we can perform an expansion in commutators

We can use this to exponentiate a Hamiltonian with pieces that do 
not commute.  
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then we can use either of the first-order Trotter-Suzuki approximations

If our Hamiltonian has two non-commuting pieces 

If our Hamiltonian has three non-commuting pieces 
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Then we have the first-order Trotter-Suzuki expressions

The second-order Trotter-Suzuki approximation has the form

(also other orderings)

(also other orderings)
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Let us define

Time evolution of Heisenberg spin chains

Let us consider a one-dimension spin chain with an external magnetic 
field and couplings between nearest neighbor sites

Smith et  al., npj Quant. Info. 5 106 (2019)
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We can use the first-order Trotter-Suzuki approximation

Smith et  al., npj Quant. Info. 5 106 (2019)
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is a nearest-neighbor hopping term for the bosons.  The term 

If we think of the state 

as the vacuum state and each      as a particle excitation, then we 
can view the Heisenberg model as a model of bosons with hard core 
repulsion.  The term

is an external potential plus an overall constant.
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The term

is a nearest neighbor interaction between bosons, plus a chemical 
potential and an overall constant.

To remove the extra overall constant we simply write

To remove these extra terms, we simply write 



credit: George Raithel

Analogy:  Evaporative cooling
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Projected cooling algorithm

D.L, Bonitati, Given, Hicks, Li, Lu, Rai, Sarkar, Watkins, Phys. Lett. B 807, 135536 (2020)
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Projected cooling



Consider a Hamiltonian H with translational invariance and exactly one 

localized state (i.e., the ground state)

We take the system volume to be large enough to avoid rebounding 

reflections from the boundary.  Let P be a projection operator onto a 

localized region. In the limit of large time t, the projected time evolution 

has a stable fixed point 
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Example:

Consider a single hardcore boson placed in a short-range potential 
well with only one bound state
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five random initial states

Overlap with
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