
Lecture 1:  
Introduction to quantum computing, 

qubits, gates and superposition

Alexei Bazavov 
Michigan State University 

FRIB-TA Summer School 
MSU Jun 20 — 22, 2022



Alexei Bazavov (MSU)

Introduction

• What is quantum computing? 
• Why do we need it? 
• How can we make it work for the problems we want to solve? 

Jun 20, 2022



Alexei Bazavov (MSU)

Introduction

• What is quantum computing?  
A type of computing where the programming model follows 
principles of quantum mechanics

Jun 20, 2022



Alexei Bazavov (MSU)

Introduction

• What is quantum computing?  
A type of computing where the programming model follows 
principles of quantum mechanics

Jun 20, 2022

80 Introduction to quantum mechanics

2.2 The postulates of quantum mechanics

All understanding begins with our not accepting the world as it appears.
– Alan Kay

The most incomprehensible thing about the world is that it is comprehensible.
– Albert Einstein

Quantum mechanics is a mathematical framework for the development of physical theo-
ries. On its own quantum mechanics doesn’t tell you what laws a physical system must
obey, but it does provide a mathematical and conceptual framework for the development
of such laws. In the next few sections we give a complete description of the basic postu-
lates of quantum mechanics. These postulates provide a connection between the physical
world and the mathematical formalism of quantum mechanics.
The postulates of quantum mechanics were derived after a long process of trial and

(mostly) error, which involved a considerable amount of guessing and fumbling by the
originators of the theory. Don’t be surprised if the motivation for the postulates is not
always clear; even to experts the basic postulates of quantum mechanics appear surprising.
What you should expect to gain in the next few sections is a good working grasp of the
postulates – how to apply them, and when.

2.2.1 State space
The first postulate of quantum mechanics sets up the arena in which quantum mechanics
takes place. The arena is our familiar friend from linear algebra, Hilbert space.

Postulate 1: Associated to any isolated physical system is a complex vector space
with inner product (that is, a Hilbert space) known as the state space of the
system. The system is completely described by its state vector, which is a unit
vector in the system’s state space.

Quantum mechanics does not tell us, for a given physical system, what the state space
of that system is, nor does it tell us what the state vector of the system is. Figuring that
out for a specific system is a difficult problem for which physicists have developed many
intricate and beautiful rules. For example, there is the wonderful theory of quantum
electrodynamics (often known as QED), which describes how atoms and light interact.
One aspect of QED is that it tells us what state spaces to use to give quantum descriptions
of atoms and light. We won’t be much concerned with the intricacies of theories like QED
(except in so far as they apply to physical realizations, in Chapter 7), as we are mostly
interested in the general framework provided by quantum mechanics. For our purposes
it will be sufficient to make some very simple (and reasonable) assumptions about the
state spaces of the systems we are interested in, and stick with those assumptions.
The simplest quantum mechanical system, and the system which we will be most

concerned with, is the qubit. A qubit has a two-dimensional state space. Suppose |0⟩ and
|1⟩ form an orthonormal basis for that state space. Then an arbitrary state vector in the
state space can be written

|ψ⟩ = a|0⟩ + b|1⟩, (2.82)

Nielsen, Chuang, Ch. 2



Alexei Bazavov (MSU)

Introduction

• What is quantum computing?  
A type of computing where the programming model follows 
principles of quantum mechanics

Jun 20, 2022

80 Introduction to quantum mechanics

2.2 The postulates of quantum mechanics

All understanding begins with our not accepting the world as it appears.
– Alan Kay

The most incomprehensible thing about the world is that it is comprehensible.
– Albert Einstein

Quantum mechanics is a mathematical framework for the development of physical theo-
ries. On its own quantum mechanics doesn’t tell you what laws a physical system must
obey, but it does provide a mathematical and conceptual framework for the development
of such laws. In the next few sections we give a complete description of the basic postu-
lates of quantum mechanics. These postulates provide a connection between the physical
world and the mathematical formalism of quantum mechanics.
The postulates of quantum mechanics were derived after a long process of trial and

(mostly) error, which involved a considerable amount of guessing and fumbling by the
originators of the theory. Don’t be surprised if the motivation for the postulates is not
always clear; even to experts the basic postulates of quantum mechanics appear surprising.
What you should expect to gain in the next few sections is a good working grasp of the
postulates – how to apply them, and when.

2.2.1 State space
The first postulate of quantum mechanics sets up the arena in which quantum mechanics
takes place. The arena is our familiar friend from linear algebra, Hilbert space.

Postulate 1: Associated to any isolated physical system is a complex vector space
with inner product (that is, a Hilbert space) known as the state space of the
system. The system is completely described by its state vector, which is a unit
vector in the system’s state space.

Quantum mechanics does not tell us, for a given physical system, what the state space
of that system is, nor does it tell us what the state vector of the system is. Figuring that
out for a specific system is a difficult problem for which physicists have developed many
intricate and beautiful rules. For example, there is the wonderful theory of quantum
electrodynamics (often known as QED), which describes how atoms and light interact.
One aspect of QED is that it tells us what state spaces to use to give quantum descriptions
of atoms and light. We won’t be much concerned with the intricacies of theories like QED
(except in so far as they apply to physical realizations, in Chapter 7), as we are mostly
interested in the general framework provided by quantum mechanics. For our purposes
it will be sufficient to make some very simple (and reasonable) assumptions about the
state spaces of the systems we are interested in, and stick with those assumptions.
The simplest quantum mechanical system, and the system which we will be most

concerned with, is the qubit. A qubit has a two-dimensional state space. Suppose |0⟩ and
|1⟩ form an orthonormal basis for that state space. Then an arbitrary state vector in the
state space can be written

|ψ⟩ = a|0⟩ + b|1⟩, (2.82)

The postulates of quantum mechanics 81

where a and b are complex numbers. The condition that |ψ⟩ be a unit vector, ⟨ψ|ψ⟩ = 1,
is therefore equivalent to |a|2 + |b|2 = 1. The condition ⟨ψ|ψ⟩ = 1 is often known as the
normalization condition for state vectors.
We will take the qubit as our fundamental quantum mechanical system. Later, in

Chapter 7, we will see that there are real physical systems which may be described in
terms of qubits. For now, though, it is sufficient to think of qubits in abstract terms,
without reference to a specific realization. Our discussions of qubits will always be referred
to some orthonormal set of basis vectors, |0⟩ and |1⟩, which should be thought of as being
fixed in advance. Intuitively, the states |0⟩ and |1⟩ are analogous to the two values 0 and
1 which a bit may take. The way a qubit differs from a bit is that superpositions of these
two states, of the form a|0⟩ + b|1⟩, can also exist, in which it is not possible to say that
the qubit is definitely in the state |0⟩, or definitely in the state |1⟩.
We conclude with some useful terminology which is often used in connection with

the description of quantum states. We say that any linear combination
∑

i αi|ψi⟩ is a
superposition of the states |ψi⟩ with amplitude αi for the state |ψi⟩. So, for example,
the state

|0⟩ − |1⟩√
2

(2.83)

is a superposition of the states |0⟩ and |1⟩ with amplitude 1/
√
2 for the state |0⟩, and

amplitude − 1/
√
2 for the state |1⟩.

2.2.2 Evolution
How does the state, |ψ⟩, of a quantum mechanical system change with time? The following
postulate gives a prescription for the description of such state changes.

Postulate 2: The evolution of a closed quantum system is described by a unitary
transformation. That is, the state |ψ⟩ of the system at time t1 is related to the
state |ψ′⟩ of the system at time t2 by a unitary operator U which depends only on
the times t1 and t2,

|ψ′⟩ = U |ψ⟩ . (2.84)

Just as quantum mechanics does not tell us the state space or quantum state of a
particular quantum system, it does not tell us which unitary operators U describe real-
world quantum dynamics. Quantum mechanics merely assures us that the evolution of
any closed quantum system may be described in such a way. An obvious question to ask
is: what unitary operators are natural to consider? In the case of single qubits, it turns
out that any unitary operator at all can be realized in realistic systems.
Let’s look at a few examples of unitary operators on a single qubit which are impor-

tant in quantum computation and quantum information. We have already seen several
examples of such unitary operators – the Pauli matrices, defined in Section 2.1.3, and
the quantum gates described in Chapter 1. As remarked in Section 1.3.1, the X matrix is
often known as the quantum gate, by analogy to the classical gate. The X and
Z Pauli matrices are also sometimes referred to as the bit flip and phase flip matrices: the
X matrix takes |0⟩ to |1⟩, and |1⟩ to |0⟩, thus earning the name bit flip; and the Z matrix
leaves |0⟩ invariant, and takes |1⟩ to − |1⟩, with the extra factor of − 1 added known as a
phase factor, thus justifying the term phase flip. We will not use the term phase flip for
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Postulate 4: The state space of a composite physical system is the tensor product
of the state spaces of the component physical systems. Moreover, if we have
systems numbered 1 through n, and system number i is prepared in the state
|ψi⟩, then the joint state of the total system is |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · ·⊗ |ψn⟩.

Why is the tensor product the mathematical structure used to describe the state space of
a composite physical system? At one level, we can simply accept it as a basic postulate, not
reducible to something more elementary, and move on. After all, we certainly expect that
there be some canonical way of describing composite systems in quantum mechanics.
Is there some other way we can arrive at this postulate? Here is one heuristic that is
sometimes used. Physicists sometimes like to speak of the superposition principle of
quantum mechanics, which states that if |x⟩ and |y⟩ are two states of a quantum system,
then any superposition α|x⟩+β|y⟩ should also be an allowed state of a quantum system,
where |α|2 + |β|2 = 1. For composite systems, it seems natural that if |A⟩ is a state of
system A, and |B⟩ is a state of system B, then there should be some corresponding state,
which we might denote |A⟩|B⟩, of the joint system AB. Applying the superposition
principle to product states of this form, we arrive at the tensor product postulate given
above. This is not a derivation, since we are not taking the superposition principle as a
fundamental part of our description of quantum mechanics, but it gives you the flavor of
the various ways in which these ideas are sometimes reformulated.
A variety of different notations for composite systems appear in the literature. Part of

the reason for this proliferation is that different notations are better adapted for different
applications, and we will also find it convenient to introduce some specialized notations
on occasion. At this point it suffices to mention a useful subscript notation to denote
states and operators on different systems, when it is not clear from context. For example,
in a system containing three qubits, X2 is the Pauli σx operator acting on the second
qubit.

Exercise 2.66: Show that the average value of the observable X1Z2 for a two qubit
system measured in the state (|00⟩ + |11⟩)/

√
2 is zero.

In Section 2.2.5 we claimed that projective measurements together with unitary dy-
namics are sufficient to implement a general measurement. The proof of this statement
makes use of composite quantum systems, and is a nice illustration of Postulate 4 in
action. Suppose we have a quantum system with state space Q, and we want to per-
form a measurement described by measurement operators Mm on the system Q. To do
this, we introduce an ancilla system, with state space M , having an orthonormal basis
|m⟩ in one-to-one correspondence with the possible outcomes of the measurement we
wish to implement. This ancilla system can be regarded as merely a mathematical device
appearing in the construction, or it can be interpreted physically as an extra quantum
system introduced into the problem, which we assume has a state space with the required
properties.
Letting |0⟩ be any fixed state of M , define an operator U on products |ψ⟩|0⟩ of states

|ψ⟩ from Q with the state |0⟩ by

U |ψ⟩|0⟩ ≡
∑

m

Mm|ψ⟩|m⟩. (2.122)

Using the orthonormality of the states |m⟩ and the completeness relation
∑

m M †
mMm =
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• Combinatorial problems 
• Evaluation of functions 
• Root finding 
• Numerical differentiation and integration 
• Solving ODEs and PDEs 
• Optimization 
• Linear algebra (linear systems, eigenproblems) 
• Stochastic (Monte Carlo) sampling
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Classical computing

Why has classical computing been successfully applied to so many  
problems? 

• Hardware improvements in 20th century 
• Hundreds or even thousands of years of algorithm development
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• Runge-Kutta method for ODEs — early 20th century 
• Gauss elimination — 19th century (ideas around -3rd century!) 
• Euler method for ODEs — 18th century 
• Stochastic “integration” (Buffon’s needle) — 18th century 
• Newton-Raphson method — 17th century (ideas around 1st century!)

                x = a ⇒ x2 − a = 0 ⇒ x0 = a, xn+1 = (xn + a/xn)/2
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Square root by iteration
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Square root by iteration
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• Why do we need quantum computing?

Jun 20, 2022



Alexei Bazavov (MSU)

Scaling

• There are known examples such as factorization into primes, 
traveling salesman and other problems that require non-polynomial 
computational effort 

• As a physics example, consider classical Ising model: 
        ,      

         

• The average energy at a given temperature : 

        

E({s}) = − J∑
⟨ij⟩

sisj si ∈ {−1,1}

Z = ∑
{s}

exp (−
E({s})

kBT )
T

⟨E⟩(T ) =
1
Z ∑

{s}

E({s}) exp (−
E({s})

kBT )
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Scaling

• To calculate  on a  lattice requires summing over  spin 
configurations 

• Assume that  (a very modest lattice) and it takes  floating 
point operations to evaluate the energy of the configuration, then we 
need  floating point operations 

• The most powerful supercomputer today (Frontier, top500) can 
operate at about 1 ExaFlop/s =  Flop/s, so it would take about 

 seconds to evaluate the exact solution (the age of the universe 
is about  s) 

• For classical statistical problems and problems that can be reduced to 
those (such as Euclidean lattice gauge theory) stochastic methods can 
often help to obtain approximate solutions

⟨E⟩ N3 2N3

N = 10 n

n ⋅ 21000 ∼ 10301n

1018

10283n
4.3 × 1017
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Scaling

• For quantum problems (e.g. time evolution of a quantum Ising model 
would require exponentiating a  matrix) or where Monte 
Carlo is inapplicable (often due to the sign problem) classical 
algorithms scale exponentially with the number of degrees of 
freedom 

• Feynman (1982): 
 “The rule of simulation that I would like to have is that the number 
of computer elements required to simulate a large physical system is 
only to be proportional to the space-time volume of the physical 
system. I don’t want to have an explosion.”  

2N3 × 2N3
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Some history

• P. Benioff (1980), “The Computer as a Physical System: A 
Microscopic Quantum Mechanical Hamiltonian Model of Computers 
as Represented by Turing Machines” 

• R.P. Feynman (1982), “Simulating Physics with Computers”:  
      “Can a universal quantum simulator be built?” 

• S. Lloyd (1996), “Universal Quantum Simulators”:  
      “Yes”
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• How can we make quantum computing work for the problems we 
want to solve?
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Complex vector space

• Is a non-empty set of  whose elements are called vectors, denoted 
, with three operations: 

• addition :  
• negation :  
• scalar multiplication  :  

and a distinguished element zero vector  
• These operations and zero satisfy the following properties: 

• commutativity and associativity of the addition 
• zero is an additive identity and every vector has an inverse 
• scalar multiplication has 1 and respects complex multiplication 
• scalar multiplication distributes over addition and complex 

addition

V
|v⟩

+ V × V → V
− V → V

⋅ C × V → V
0 ∈ V
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Complex vector space

• We are mainly interested in complex vector space : -tuples of 
complex numbers 

• In the simplest case, : 

                 

• A spanning set is a set of vectors  such that for any 

vector  

• For  we can choose: 

,         

Cn n

C2

|z⟩ = (z1
z2)

|v1⟩, …, |vn⟩

|v⟩ : |v⟩ = ∑
i

ai |vi⟩

C2

|v1⟩ ≡ (1
0) |v2⟩ ≡ (0

1)
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Complex vector space

• A set of non-zero  is linearly dependent if  
exist that  with  for at least one value 
of  

• A set of linearly independent vectors that span vector space  is a 
basis in  

• The number of elements in the basis is the dimension of  
• In quantum computing we work with finite-dimensional vector 

spaces

|v1⟩, …, |vn⟩ a1, …, an

a1 |v1⟩ + … + an |vn⟩ = 0 ai ≠ 0
i

V
V

V
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Complex vector space

• A linear operator between vector spaces  and  is any function 
 which is linear in its inputs:  

            

• Normally use simpler notation:  

• Let  be the basis for  and  for , then 
for each  in the range  there exist complex numbers

 such that 

           

•  is a matrix representation of the operator 

V W
A : V → W

A (∑
i

ai |vi⟩) = ∑
i

ai A( |vi⟩)

A( |v⟩) ≡ A |v⟩
|v1⟩, …, |vm⟩ V |w1⟩, …, |wn⟩ W

j 1,…, m
A1j, …, Anj

A |vj⟩ = ∑
i

Aij |wi⟩

Aij A
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Inner product

• An inner product on a complex vector space  is a function  
         
that satisfies the following 
• non-degenerate:  and  if and only if 

 
• respects addition and scalar multiplication 
• skew-symmetric:  

•   with inner product is called inner product space (Hilbert space) 
• The dual vector  for  is a linear operator from the inner 

product space  to the complex numbers  such that 
        

• Dirac notation:  — ket-vector (column),  — bra-vector (row)

V
(…, …) : V × V → C

( |v⟩, |v⟩) ≥ 0 ( |v⟩, |v⟩) = 0
|v⟩ = 0

( |v⟩, |w⟩) = ( |w⟩, |v⟩)*
V

⟨v | |v⟩
V C

⟨v | ( |w⟩) ≡ ⟨v |w⟩ ≡ ( |v⟩, |w⟩)
|v⟩ ⟨v |
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Orthonormal bases

• Vectors  and  are orthogonal if  

• Norm of vector :  

• A set of vectors  is orthonormal if each vector is a unit vector, 
 and distinct vectors in the set are orthogonal, 

 

• Most of the time we use matrix representations of linear operators 
with respect to orthonormal bases 

• The inner product on a Hilbert space with an orthonormal basis:  

|v⟩ |w⟩ ⟨v |w⟩ = 0
|v⟩ | | |v⟩ | | ≡ ⟨v |v⟩

| i⟩
| | | i⟩ | | = 1
⟨i | j⟩ = δij

⟨v |w⟩ = ∑
i

vi | i⟩, ∑
j

wj | j⟩ = ∑
ij

v*i wj⟨i | j⟩ = ∑
i

v*i wi
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Outer product representation

• Let  and .  Define outer product as a linear operator  
         
such that  

• Completeness relation: for any orthonormal basis   in  
        

|v⟩ ∈ V |w⟩ ∈ W
|w⟩⟨v | : V → W

( |w⟩⟨v | ) |v′�⟩ ≡ |w⟩⟨v |v′ �⟩ = ⟨v |v′�⟩ |w⟩
| i⟩ V

∑
i

| i⟩⟨i | = I
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Quantum computing: data representation

• Classical computing: bits  
         

• Quantum computing: qubits  
         

• Computational basis:  

                  

• An arbitrary state is a superposition  
                    
or  

        

b ∈ {0,1}

|q⟩ ∈ C2

|0⟩ = (1
0) |1⟩ = (0

1)
|q⟩ = α |0⟩ + β |1⟩ |α |2 + |β |2 = 1

|q⟩ = eiγ (cos
θ
2

|0⟩ + eiϕ sin
θ
2

|1⟩)
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Bloch sphere representation

Jun 20, 2022

• Drop the global phase  — it cancels in the observables 

• The angles cover the sphere: ,  , so we can treat 
them as spherical coordinates

γ
θ ∈ [0,π] ϕ ∈ [0,2π)

                                                                      |q⟩ = |0⟩ |q⟩ = |1⟩ |q⟩ = α |0⟩ + β |1⟩


