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Introduction

e What 1s quantum computing?
e Why do we need 1t?

e How can we make it work for the problems we want to solve?
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Introduction

e What 1s quantum computing?

A type of computing where the programming model follows

principles of quantum mechanics Nielsen, Chuang, Ch. 2

Postulate 1: Associated to any isolated physical system 1s a complex vector space
with inner product (that is, a Hilbert space) known as the state space of the

system. The system 1s completely described by its state vector, which is a unit
vector 1n the system’s state space.
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Introduction

e What 1s quantum computing?

A type of computing where the programming model follows

principles of quantum mechanics Nielsen, Chuang, Ch. 2

Postulate 1: Associated to any isolated physical system 1s a complex vector space
with

Syste
vect

Postulate 2: The evolution of a closed quantum system 1s described by a unitary
transformation. That is, the state 1)) of the system at time ¢; is related to the

state |1’} of the system at time ¢, by a unitary operator U which depends only on
the times ¢; and %,

v) = Ul). (2.84)
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Introduction

e What 1s quantum computing?

A type of computing where the programming model follows

principles of quantum mechanics Nielsen, Chuang, Ch. 2

Postulate 1: Associated to any isolated physical system 1s a complex vector space

with : : : :
Postulate 2: The evolution of a closed quantum system 1s described by a unitary
Syste -
Lran.

vecte .. Postulate 3: Quantum measurements are described by a collection {M.,,} of
the ¢ Measurement operators. These are operators acting on the state space of the
system being measured. The index m refers to the measurement outcomes that
may occur in the experiment. If the state of the quantum system is |1))
- immediately before the measurement then the probability that result m occurs is

given by
p(m) = (Y| M}, My |)) (2.92)
and the state of the system after the measurement is
M,
¥) : (2.93)
VWIME M)
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Introduction

e What 1s quantum computing?

A type of computing where the programming model follows

principles of quantum mechanics Nielsen, Chuang, Ch. 2

Postulate 1: Associated to any isolated physical system 1s a complex vector space

with : : : :
Postulate 2: The evolution of a closed quantum system 1s described by a unitary
Syste -
Lran.

vecte . Postulate 3: Quantum measurements are described by a collection {M,, } of
the ¢ Measurement operators. These are operators acting on the state space of the
system being measured. The index m refers to the measurement outcomes that
may occur in the experiment. If the state of the quantum system is |v))

- immediately before the measurement then the probability that result m occurs is
given by

Postulate 4: The state space of a composite physical system 1s the tensor product (2.92)
of the state spaces of the component physical systems. Moreover, if we have
systems numbered 1 through n, and system number ¢ 1s prepared 1n the state
14;), then the joint state of the total system is [1)1) ® |1);) ® - - - @ |1y,).

\ (WM M 1)

(2.93)
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Classical computing

Typical problems we deal with:

e Combinatorial problems

e Evaluation of functions

e Root finding

e Numerical differentiation and integration

e Solving ODEs and PDEs

e Optimization

e Linear algebra (linear systems, eigenproblems)

e Stochastic (Monte Carlo) sampling
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Classical computing

Why has classical computing been successfully applied to so many

problems?

e Hardware improvements in 20th century

e Hundreds or even thousands of years of algorithm development

e Runge-Kutta method for ODEs — early 20th century

e (Gauss elimination — 19th century (ideas around -3rd century!)
e Euler method for ODEs — 18th century

e Stochastic “integration” (Buffon’s needle) — 18th century

e Newton-Raphson method — 17th century (ideas around 1st century!)

x=\/5 > x*-a=0 = xy=a, x,,=(,+alx)/2
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Square root by iteration

1 #include <stdio.h>
2 #include <math.h>

)

-~ A

int main() {
5 // parameters

int depth = 100; float a = 2., eps = le-4;
7 // storage
8 int i; float x, xp;

10 // initialization
11 X =a; 1= 0;

13 // evolution

14 do {

15 Xxp = X; x = ( x + a/x ) / 2;

16 i++;

17 } while( fabs( x-xp ) > eps && i < depth );
l

]

19 // read-out
0 printf( "sqrt(%g) ~ %g\n", a, x );

22 return 90;
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Square root by iteration

1 #include <stdio.h>
2 #include <math.h>

)

-~ A

int main() {

5 // parameters

: int depth = 4; float a = 2.;
7 // storage

8 int 1; float x;

10 // initialization

11 X =a; 1= 0;

13 // evolution

14 do {

15 x = (x +a/x )/ 2;
16 i++;

17 } while( i < depth );
l

]

19 // read-out
0 printf( "sqrt(%g) ~ %g\n", a, x );

22 return 90;
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Square root by iteration

#include <stdio.h>
#include <math.h>

int main() {
// parameters
float a = 2.;
// storage
float x;

10 // initialization
11 X = aj

13 // evolution

14 x = (x + a/x )/ 2;
15 X = X+a/X)/2;
16 x = (x +a/x ) / 2;
17 X:(X+a/X)/2;
ﬁln::i:w

19 // read-out

0 printf( "sqrt(%g) ~ %g\n", a, x );

return 0;
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Square root by iteration

#include <stdio.h>
#include <math.h>

int main() { degree(s) of freedom J

// parameters
float a = 2.;

// storage . e .
float x: initial state preparation
// initialization

X aj 01000000000000000000000000000000

// evolution

x = (x + a/x ) / 2; 00111111110000000000000000000000
X = X + a/x ) / 2; 90111111101101010101010101010110
x = (x + a/x )/ 2; 00111111101101010000010100000101
x = (x + a/x )/ 2; 90111111101101010000010011110011
// read-out

printf( "sqrt(%g) ~ %g\n", a, x ); CVOIU.tiOIl J

return 90;
} measurement )
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1

Square root by iteration

#include <stdio.h>

2 #include <math.h>

Alexei Bazavov (MSU)

int main() { (A A
// parameters : 7 .
float a = 2.; - | !
// storage E -
float x; 2 ) 21—+
- — /
// initialization
X = aj;
_ (7¢: £3 Of 10 45 movss —4(%rbp), %xmmo A
// evolution 84: f3 Of 5e 45 f8\ divss -8(%rbp), %xmmo
x = (x+alx) /2 89: f3 Of 58 45 £8 Yaddss —-8(%rbp), %xmmo
x = (x+a/lx)/ 2;‘(,/’//.8e: f3 of 10 0d 00 00 00 00 movss (%rip), %xmmi
x = (x+alx) /[ 2; 96: f3 Of 5e c1  divss %xmml, %xmm@
x = (x+alx) /2 k?a: f3 of 11 45 f8 movss %xmm@, —-8(%rbp) y
// read-out
printf( "sqrt(%g) ~ %g\n", a, x );
return 0;
¥
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e Why do we need quantum computing?
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Scaling

e There are known examples such as factorization into primes,
traveling salesman and other problems that require non-polynomial
computational effort

e As a physics example, consider classical Ising model:

E{sh=-J) ss. s €{-11)
(i)
E({s})
/= Z exXp ( T )

{5}

e The average energy at a given temperature 7

1 E({s})
(EX(T) = z%m”) exp( T )
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Scaling

e To calculate (E) on a N? lattice requires summing over 2V ’ spin
configurations

e Assume that N = 10 (a very modest lattice) and it takes »n floating
point operations to evaluate the energy of the configuration, then we

21000 L 1091, floating point operations

need 7 -
e The most powerful supercomputer today (Frontier, top500) can
operate at about 1 ExaFlop/s = 10'® Flop/s, so it would take about
10%%%n seconds to evaluate the exact solution (the age of the universe
is about 4.3 x 107 s)
e For classical statistical problems and problems that can be reduced to
those (such as Euclidean lattice gauge theory) stochastic methods can

often help to obtain approximate solutions
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Scaling

e For quantum problems (e.g. time evolution of a quantum Ising model

would require exponentiating a 2V "% 2N matrix) or where Monte
Carlo 1s mapplicable (often due to the sign problem) classical
algorithms scale exponentially with the number of degrees of
freedom

e Feynman (1982):

“The rule of simulation that I would like to have 1s that the number

of computer elements required to simulate a large physical system 1s
only to be proportional to the space-time volume of the physical

system. I don’t want to have an explosion.”
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Some history

e P. Benioff (1980), “The Computer as a Physical System: A
Microscopic Quantum Mechanical Hamiltonian Model of Computers
as Represented by Turing Machines”

e R.P. Feynman (1982), “Simulating Physics with Computers”:

“Can a universal quantum simulator be built?”

e S. Lloyd (1996), “Universal Quantum Simulators”:

66Y6899
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e How can we make quantum computing work for the problems we

want to solve?
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Complex vector space

e Is a non-empty set of V whose elements are called vectors, denoted

| v), with three operations:
e addition+: VXV >V

e negation —: V-V

e scalar multiplication- : C XV = V

and a distinguished element zero vector 0 € V

e These operations and zero satisty the following properties:

e commutativity and associativity of the addition

e zero 1s an additive 1dentity and every vector has an inverse

® scal

® scal

adc

ar multip]

1cation has 1 and respects complex multiplication

ar multip]

1t10N
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1cation distributes over addition and complex
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Complex vector space

e We are mainly interested in complex vector space C": n-tuples of
complex numbers

e In the simplest case, C*:

2= ()

e A spanning set is a set of vectors |v;), ..., |v,) such that for any

vector |v) : |v) = Zailvl-)

l

e For C? we can choose:
1 0
[vy) = (O)’ [v,) = (1>
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Complex vector space

e Asetofnon-zero |vy), ..., |v,) is linearly dependent if ay, ..., a,

exist thata, |v,) + ... +a,|v,) = 0 with a; # O for at least one value

n
of 1

e A set of linearly independent vectors that span vector space V' 1s a
basis n V

e The number of elements in the basis is the dimension of V

e In quantum computing we work with finite-dimensional vector

spaces
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Complex vector space

e A linear operator between vector spaces V and W 1s any function

A : V - W which 1s linear 1n its inputs:
A Zailvi> = ZaiA(|Vi>)
e Normally use simpler notation: A(|v)) = A |v)
e Let |v),...,|v,) be the basis for Vand |w,), ..., |w,) for W, then

for each j in the range 1,..., m there exist complex numbers

Ayjs ..., A, such that

o A 18 a matrix representation of the operator A
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Inner product

e An inner product on a complex vector space V 1s a function
(e ...): VXV S C
that satisfies the following

e non-degenerate: (|v), |v)) > 0and (|v), |v)) = 0 if and only if

[v) =0

e respects addition and scalar multiplication

e skew-symmetric: (|v), |w)) = (|w),|v))*

e V with mner product is called inner product space (Hilbert space)

e The dual vector (v| for |v) is a linear operator from the inner

product space V to the complex numbers C such that

vl(w)) = (v

w) = (|v), [w))

e Dirac notation: |v) — ket-vector (column), {(v| — bra-vector (row)
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Orthonormal bases

e Vectors |v) and |w) are orthogonal if (v|w) =0
e Norm of vector [v): || [v) || =4/(v]V)

e A et of vectors |i) is orthonormal if each vector is a unit vector,
|| |i) || = 1 and distinct vectors in the set are orthogonal,
N 5zj

e Most of the time we use matrix representations of linear operators

with respect to orthonormal bases

e The mner product on a Hilbert space with an orthonormal basis:

wiwy = D oviliy, Yowiliy [ = D vEwdiljy = Y viw,
J

i ij i
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Outer product representation

e Let |[v) € Vand |w) € W. Define outer product as a linear operator
Ilwy{v|: VoW
such that (|w){(v|)|v") = |w){v|V) = (v|v)|w)

e Completeness relation: for any orthonormal basis |i) in V

D lixil=1
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Quantum computing: data representation

e (Classical computing: bits
b e {0,1}
e Quantum computing: qubits

|q) € C*

e Computational basis:

o) =)

e An arbitrary state 1s a superposition
@) =al0)+4I1)  lal*+|pI"=1

or
. 0 . 0
|g) = eY <COSE|O> + e“bsinE | 1))
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Bloch sphere representation

e Drop the global phase y — it cancels 1n the observables
e The angles cover the sphere: 6§ € [0,7], ¢ € [0,27), so we can treat

them as spherical coordinates

o) 0) 0)
]‘"\ N
[y y
X 7 X _ X .
1) “11) NEY
[g) =10) gy =11) ) =al0) + (1)
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