Probing shell evolution with large-scale shell-model calculations

Yutaka Utsuno

Advanced Science Research Center, Japan Atomic Energy Agency

Center for Nuclear Study, University of Tokyo
Mutual communication among microscopic, empirical, and phenomenological approaches becomes important.
Monopole matrix elements: case of pf-shell

- Strong $j_j > j'_j$ attraction particularly for the $T=0$ channel: tensor
- Empirical interaction: overall repulsive shift for the $T=1$ monopole

Monopole-based universal interaction V_{MU}

(a) central force:
Gaussian
(strongly renormalized)

(b) tensor force:
$\pi + \rho$ meson exchange

$V_{MU} = \quad + \quad$

- Bare tensor
 - Renormalization persistency
- Phenomenological Gaussian central
 - Supported by empirical interactions
Effect of three-nucleon forces

- Contributing to repulsion in $T=1$ two-body forces
- Ab-initio-type calculations give similar effects.
- V_{MU} includes this effect implicitly.

Outline of this talk

• Shell-model calculations using V_{MU} combined with empirical interactions

1. Shell evolution caused by $T=1$ monopole interactions
 1. Unnatural-parity states of neutron-rich Si isotopes (very briefly)
 2. Unnatural-parity states of neutron-rich Cr-Ni isotopes
 3. Unnatural-parity states of neutron-rich Ca isotopes

2. Application of large-scale shell-model calculation to photonuclear reactions
 – Ca isotopes

3. Analyzing shell-model wave functions in terms of mean-field picture
 – Origin of the exotic isomeric 4^+ state in ^{44}S
Collaborators

- V_{MU}: T. Otsuka, T. Suzuki, M. Honma, K. Tsukiyama, N. Tsunoda, M. Hjorth-Jensen
- sd-pf: T. Otsuka, B. A. Brown, M. Honma, T. Mizusaki, N. Shimizu
- Cr-Ni: T. Togashi, N. Shimizu, T. Otsuka, M. Honma
- Ca: T. Otsuka, N. Shimizu, M. Honma, T. Mizusaki
- E1: N. Shimizu, T. Otsuka, S. Ebata, M. Honma
- ^{44}S: N. Shimizu, T. Otsuka, T. Yoshida, Y. Tsunoda
Refined V_{MU} for the shell-model

• tensor: $\pi+\rho$

• spin-orbit: M3Y
 - Works in some cases

• central: to be close to GXPF1
 - Including "density dependence" to better fit empirical interactions

A good guide for a shell-model interaction without direct fitting to experiment

Y. Utsuno et al., EPJ Web of Conferences 66, 02106 (2014).
$T=1$ monopole: case of sd-pf shell

- SDPF-MU interaction based on the refined V_{MU}
 - USD for the sd shell and GXPF1B for the pf shell
 - Refined V_{MU} for the cross-shell

Cross-shell of SDPF-U: two-body G martix

Evolution of unnatural-parity states in Si

The gap changes with increasing neutrons in $f_{7/2}$ depending on the $T=1$ monopole strength.

Unnatural-parity states are good indicators of the gap.

- A recent experiment at NSCL supports nearly zero value of $T=1$ cross-shell monopole matrix elements.

Sharp drop of the $9/2^+$ level in Cr, Fe and Ni

Experimental $9/2^+$ levels in Cr, Fe, and Ni isotopes

- Does this mean the reduction of the $N=40$ gap due to the $T=1$ monopole interaction?
Shell-model calculation

• Model space
 – Valence shell: full pf shell + $0g_{9/2} + 0d_{5/2}$
 – Allowing up to one neutron excitation from the pf shell to the upper orbits
 • $N \leq 35$ isotopes are pf-shell nuclei
 • One can use an empirical pf-shell interaction as it is because of no coupling to 2p-2h or 3p-3h configurations.
 – M-scheme dimension: up to 1.8×10^{10} for 59Ni (manageable with KSHELL)

• Effective interaction
 – GXPF1Br for the fp shell + the refined V_{MU}
 – One modification for $\langle g_{9/2}f_{5/2}|V|g_{9/2}f_{5/2}; J, T = 1 \rangle$
 – SPE of $g_{9/2}$ (one free parameter): determined to fit the overall $9/2^+$ levels
 – SPE of $d_{5/2}$: not sensitive to the results; effective gap from $g_{9/2} \approx 2$ MeV
Good agreement including unfavored-signature states
Evolution of the $9/2^+$ levels

- Positions and spectroscopic strengths are well reproduced.
 - Large single-neutron amplitudes for the $9/2^+$
Evolution of the $g_{9/2}$ orbit

- $g_{9/2}$ and $d_{5/2}$ orbits are kept almost constant with N.
 - Due to nearly zero $T=1$ cross-shell monopole matrix elements according to V_{MU}
- Simple estimate of the location of $g_{9/2}$ from measurement
 - Binding energy of the $9/2^+$ level measured from the even-N core $= -S_n + E_x(9/2^+)$
 - Nearly constant with N both from experiment and calculation
Investigating $g_{9/2}$ in n-rich Ca isotopes

• $g_{9/2}$ orbit in neutron-rich Ca isotopes
 – Plays a crucial role in determining the drip line and the double magicity in 60Ca

• What is learned from the study of Cr-Ni isotopes
 – The $g_{9/2}$ orbit does not change sharply at least for $N \leq 35$ isotopes.
 – Similar evolution should occur in Ca isotopes, too.

• How to spot the position of $g_{9/2}$ in Ca isotopes?
 – Unnatural-parity states: similar to Cr-Ni cases
 – One should also take into account excitation from the sd shell to the pf shell:
 not dominant in Cr-Ni region
Shell-model calculation

• Model space
 – Full sd-pf-sdg shell
 – Allowing one nucleon excitation from the sd shell to the pf shell or the pf shell to the sdg shell:
 full $1\hbar\omega$ calculation

• Effective interaction
 – A natural extension of SDPF-MU and the one used for Cr-Ni isotopes:
 SDPF-MU for the sd-pf shell + the refined V_{MU} for the other
 • SDPF-MU: USD (sd) + GXPF1B (pf) + the refined V_{MU} for the other
 – SPE of $g_{9/2}$: needed to refit because of activating excitation from sd to pf
 → determined to fit the $9/2^+$ level in ^{50}Ti ($C^2S = 0.37$ or 0.54)
 – SPE of other sdg orbits: to follow schematic Nilsson SPE
Systematics of the 3^-_1 state in even-A Ca

- Three calculations
 A) excitations from sd to pf only
 B) excitations from pf to sdg only
 C) full $1\hbar\omega$ configurations

- 3^-_1 levels
 - sd-pf calc.
 - good agreement for $N \leq 28$
 - large deviation for $N > 28$
 - full $1\hbar\omega$ calc.
 - Strong mixing with the sdg configuration accounts for the stable positioning of the 3^-_1 levels.
3^{-}_1 configuration probed by direct reaction

- ^{50}Ca: strongly populated by the $^{48}\text{Ca}(t, p)$ reaction
 - neutron excitation

- ^{52}Ca: strongly populated by the $2p$ knockout from ^{54}Ti
 - proton excitation

<table>
<thead>
<tr>
<th>State</th>
<th>Energy (MeV)</th>
<th>θ (angle in c.m. system)</th>
<th>$\frac{d\sigma(\theta)}{d\Omega}$ (exp)</th>
<th>$\frac{d\sigma(\theta)}{d\Omega}$ (th. $r^4 = 0$)</th>
<th>$\frac{d\sigma(\theta)}{d\Omega}$ (th. $r^4 = 0.02$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0</td>
<td>5°</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2^+_1</td>
<td>1.03</td>
<td>20°</td>
<td>42</td>
<td>39</td>
<td>32</td>
</tr>
<tr>
<td>2^+_2</td>
<td>3.00</td>
<td>20°</td>
<td>36</td>
<td>40</td>
<td>36</td>
</tr>
<tr>
<td>0^+_3</td>
<td>3.53</td>
<td>5°</td>
<td>2</td>
<td>5.5</td>
<td>2.4</td>
</tr>
<tr>
<td>(3$^-$)</td>
<td>3.99</td>
<td>28°</td>
<td>21</td>
<td>43</td>
<td>37</td>
</tr>
<tr>
<td>0^+_3</td>
<td>4.47</td>
<td>5°</td>
<td>2.2</td>
<td>1.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Without the strong mixing between proton and neutron excitations these properties are hard to explain because larger-N nuclei should be more easily excited to higher orbits.
Energy levels of 49Ca

- 48Ca + n system
 - Single-particle structure may appear.
 - Core-coupled states can compete in high excitation energies.

- $9/2^+$ state at 4.017 MeV
 - Firm spin-parity assignment made recently (D. Montanani et al., PLB 697, 288 (2011); PRC 85, 044301 (2012)).
 - Interpreted as core-coupled state.
 - Present calc.: Strong mixing with $g_{9/2}$ is also important.
 - Good B(E3)

<table>
<thead>
<tr>
<th>$3/2^+_1$</th>
<th>$5/2^+_1$</th>
<th>$7/2^+_1$</th>
<th>$9/2^+_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of sdg</td>
<td>6</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>
Systematics of $g_{9/2}$ strength in $N=29$ isotones

<table>
<thead>
<tr>
<th></th>
<th>dimension</th>
<th>E_x (MeV)</th>
<th>C^2S (n attached)</th>
</tr>
</thead>
<tbody>
<tr>
<td>49Ca</td>
<td>2,515,437</td>
<td>4.02</td>
<td>3.80</td>
</tr>
<tr>
<td>51Ti</td>
<td>187,386,759</td>
<td>3.77</td>
<td>3.77</td>
</tr>
<tr>
<td>53Cr</td>
<td>3,411,147,908</td>
<td>3.71</td>
<td>4.04</td>
</tr>
</tbody>
</table>

- $9/2^+$ of $N=29$ isotones
 - Shell-model calc. is possible up to 53Cr.
 - Strong mixing with $g_{9/2}$ for all the isotones in calc. but small C^2S for 49Ca in expt.
 - Effect of the doublet? (see right)

Systematics of the $9/2^+_1$ state in odd-A Ca

- $9/2^+_1$ in the *sd-pf* calculation
 - Core-coupled state
 - Located stably at 5-6 MeV
- $9/2^+_1$ in the *pf-sdg* calculation
 - Sharply decreasing due to the shift of the Fermi level
- $9/2^+_1$ in the *full 1$\hbar\omega$* calculation
 - 3-4 MeV up to $N=33$ but drops considerably at $N=35$
 - Different from Cr-Ni
 - The state at $N=55$ is nearly a single-particle character.
 - Interesting to observe at FRIB
Neutron effective single-particle energy

- Global behavior
 - Stable due to very weak $T=1$ monopole matrix elements
- Location of $g_{9/2}$
 - 2-3 MeV higher than $f_{5/2}$
 - Whether ^{60}Ca is a good doubly magic nucleus depends on the evolution of $f_{5/2}$ in going from $N=34$ to 40, which is dominated by the $T=1 f_{5/2}-f_{5/2}$ monopole interaction.
 - Is there experimental data that can constrain this monopole?

Ca isotopes

- Rather stable
- Fermi surface
Application to photonuclear reaction

N. Shimizu et al., in preparation

- A good Hamiltonian for the full $1\hbar \omega$ space is constructed.
- It is expected that photonuclear reaction, dominated by $E1$ excitation, is well described with this shell-model calculation:

$$\sigma_{\text{abs}}(E) = \frac{16\pi^3 E}{9\hbar c} S_{E1}(E)$$

with $S_{E1}(E) = \sum_{\nu} B(E1; \text{g.s.} \rightarrow \nu) \delta(E - E\nu + E_0)$

- Shell-model calculation provides good level density, including non-collective levels, the coupling to which leads to the width of GDR.
- Application of shell model to photonuclear reaction has been very limited due to computational difficulty.

- Sagawa and Suzuki (O isotopes), Brown (208Pb)
Lanczos strength function method

• It is almost impossible to calculate all the eigenstates concerned using the exact diagonalization.

 – The shape of the strength function can be obtained with much less Lanczos iterations.
 1. Take an initial vector: $\bar{v}_1 = T(E1)|\text{g. s.}\rangle$
 2. Follow the usual Lanczos procedure
 3. Calculate the strength function $\sum_{\nu} B(E1; \text{g. s.} \rightarrow \nu) \frac{1}{\pi} \frac{\Gamma/2}{(E-E_{\nu}+E_0)^2+(\Gamma/2)^2}$ by summing up all the eigenstates ν in the Krylov subspace with an appropriate smoothing factor Γ until good convergence is achieved.
Convergence of strength distribution

1 iter.

100 iter.

300 iter.

1,000 iter.
Comparison with exact diagonalization

- Smoothing width: $\Gamma = 1$ MeV
- No visible difference between the two methods
Comparison with experiment for 48Ca

- GDR peak position: good
- GDR peak height: overestimated
- Low-lying states: about 0.7 MeV shifted

Need for $2\hbar\omega$ (g.s.) and $3\hbar\omega$ (1⁻)?
Beyond $1\hbar\omega$ calculation

- $3\hbar\omega$ states in the sd-pf-sdg shell are included.
 - No single-nucleon excitation to the $3\hbar\omega$ above shell
- Dimension becomes terrible!
KSHELL: MPI + OpenMP hybrid code

- **M-scheme code**
 - “On the fly”: Matrix elements are not stored in memory (analogous to ANTOINE and MSHELL64)

- **Good parallel efficiency**
 - Owing to categorizing basis states into “partition”, which stands for a set of basis states with the same sub-shell occupancies

Parallel performance

- 56Ni, pf-shell 10^9dim.

Speedup

- Time/iteration: 25 min. (16 cores) \Rightarrow 30 sec. (1024 cores)
Removal of spurious center-of-mass motion

- Usual prescription of Lawson and Gloeckner
 \[H' = H + \beta H_{CM} \text{ with } \beta = 10\hbar\omega/A \text{ MeV} \]
 - Confirming that eigenstates are well separated

\[\langle H_{CM} \rangle - \frac{3}{2} \hbar\omega \approx 0 \]

\[\langle H_{CM} \rangle - \frac{3}{2} \hbar\omega >> 0 \]
Effect of larger model space

- GDR peak height is improved.
- Low-energy tail is almost unchanged.
Development of pygmy dipole resonance

- PDR develops for $A \geq 50$, but the tail of GDR makes the peak less pronounced.
Analyzing SM w.f. in terms of mean-field

• Motivated by a recent experiment on ^{44}S
 – Very hindered $E2$ transition from the 4^+_1 to the 2^+_1 state.
 – Shell-model calculation using the SDPF-U interaction “predicts” this property.

• What is the origin of this exotic behavior?
 – Comprehensive description is desired.

Variation after angular-momentum projection

• Optimize the energy $E_{\text{AMVAP}} = \frac{\langle \Psi^I | H | \Psi^I \rangle}{\langle \Psi^I | \Psi^I \rangle}$ within the angular-momentum projected Slater determinant $|\Psi^I\rangle = \sum_K g_K \hat{P}_{MK} |\Phi\rangle$ with $|\Phi\rangle = a_1^\dagger \cdots a_n^\dagger |0\rangle$ and $a_k^\dagger = \sum_l D_{lk} c_l^\dagger$.

 – One-basis limit of MCSM

• Model space and effective interaction

 – SDPF-MU in the $\pi(sd)\nu(pf)$ shell

• Intrinsic properties of the variation after angular-momentum projected (AM-VAP) wave function

 – Deformation (β, γ): from Q_0 and Q_2 of $|\Phi\rangle$

 – Distribution of K numbers: from g_K
An isometric 4^+_1 state is obtained both in the SM and the AM-VAP.
Overlap probability between SM and AM-VAP

- $|\langle \Psi(SM)^{IM} | \Psi(AMVAP)^{IM} \rangle|^2$ is a good measure for the quality of AM-VAP states.

$$\langle \Psi(SM)^{IM} | \Psi(AMVAP)^{IM} \rangle = \langle \Psi(SM)^{IM} | \sum g_K \hat{P}^I_{MK} | \Phi \rangle = \sum g_K^* \langle \Phi | \hat{P}^I_{KM} | \Psi(SM)^{IM} \rangle^* = \sum g_K^* \langle \Phi | \Psi(SM)^{IK} \rangle^*$$

<table>
<thead>
<tr>
<th>AM-VAP</th>
<th>SM</th>
<th>Overlap probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^+_1</td>
<td>0^+_1</td>
<td>0.915</td>
</tr>
<tr>
<td>2^+_1</td>
<td>2^+_1</td>
<td>0.808</td>
</tr>
<tr>
<td>3^+_1</td>
<td>3^+_1</td>
<td>0.755</td>
</tr>
<tr>
<td>4^+_1</td>
<td>4^+_1</td>
<td>0.859</td>
</tr>
<tr>
<td>4^+_2</td>
<td>4^+_2</td>
<td>0.881</td>
</tr>
<tr>
<td>5^+_1</td>
<td>5^+_1</td>
<td>0.895</td>
</tr>
<tr>
<td>6^+_1</td>
<td>6^+_1</td>
<td>0.545</td>
</tr>
<tr>
<td></td>
<td>6^+_2</td>
<td>0.308</td>
</tr>
<tr>
<td>6^+_2</td>
<td>6^+_2</td>
<td>0.538</td>
</tr>
<tr>
<td></td>
<td>6^+_1</td>
<td>0.392</td>
</tr>
</tbody>
</table>

AM-VAP w.f.’s are good approximations to the shell model including 4^+_1.
Intrinsic properties in ^{44}S

I^π_σ	$	K	$	β	γ		
	0	1	2	3	4	5	6
0^+_1	1.00						
2^+_1	0.98	0.00	0.01				
4^+_2	0.92	0.08	0.00	0.00	0.00		
6^+_1	0.76	0.23	0.01	0.00	0.00	0.00	0.00
4^+_1	0.00	0.00	0.00	0.07	0.93		
5^+_1	0.00	0.00	0.01	0.08	0.85	0.07	
6^+_2	0.00	0.01	0.01	0.14	0.80	0.04	0.00

- $K=0$ and $K=4$ bands
 - $K=0$: usual yrast property; growing $K=1$ with spin due to the Coriolis coupling
 - $K=4$: Concentration of K in spite of significant triaxiality
 - Diagonalization in K space works.
Why yrast $K=4$ state?: a hint from ^{43}S

- Isomeric $7/2^-_1$ state in ^{43}S
 - Reproduced by full calc. and AM-VAP
 - K forbiddeness between $K=1/2$ and $K=7/2$ bands
- Consistent with AMD calc. (Kimura et al., 2013)
- The band-head energies are very close
Unified understanding of isomerism in sulfur

- Two quasiparticle orbits $\Omega=1/2$ and $\Omega=7/2$
 - Located close in energy
- $K=4$: dominated by the two-quasiparticle state $\Omega=1/2 \times \Omega=7/2$
 - $K=0$ vs. $K=4$ 4^+: competition between pairing and rotational energies
 - $2\Delta \approx 2.5$ MeV $< \text{rotational energy} \approx 3$ MeV
- Two $K=0$ states: origin of the very low 0^+_2
Summary

• Shell evolution caused by $T=1$ cross-shell monopole matrix elements is investigated with large-scale shell-model calculations.

 1. Evolution of the unnatural-parity states of neutron-rich Si
 2. Evolution of the $9/2^+$ states of neutron-rich Cr-Ni isotopes

Comparison with experiment indicates nearly zero monopole matrix elements, which is consistent with the V_{MU} interaction.

• The evolution of the $g_{9/2}$ orbit in Ca isotopes is discussed.
 — Competition and mixing with core-coupled states

• $E1$ strength functions in Ca isotopes are calculated.
 — Correlation due to coupling to $p-h$ states decreases the total $B(E1)$ values.

• Intrinsic properties of SM w.f. are discussed using variation after angular-momentum projection.
 — Demonstrating a $K=4$ isomer in ^{44}S