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Chapter 2

Review of effective interaction for the shell
model

In this chapter, we review the various theories of the effective interaction of the nuclear force, focusing
on the renormalization scheme related to the effective interaction for the shell model.

Nuclear shell model is a configuration interaction method, which is based on usually two-body
interactions and single-particle energies.

Nuclear shell model starts from the following second quantized Hamiltonian,

H =
∑

i

ϵia†i ai +
∑

i jkl

Vi j,kl a†i a†jalak. (2.1)

The input parameter is the single particle energies ϵi and the two-body interactions Vi j,kl. Then, we
calculate the Hamiltonian of many-body states, and diagonalize it to obtain the eigenenergies and the
wave functions.

The creation (annihilation) operators create (annihilate) the nucleons in some discrete orbits. Usu-
ally, these orbits are defined as the eigenfunctions of the harmonic oscillator or the Woods-Saxon
potential, for example. Nuclei have several tens of nucleons typically, which usually give rise to in-
tractably large dimensions. Therefore we have to restrict ourselves to the finite small dimension, to
diagonalize the Hamiltonian matrices. We define a subspace of whole Hilbert space which is called
the model space, where the nucleons can move inside. We also in many cases consider a frozen-core
states like 16O, whose degrees of freedom are killed. As an approximation, the particles are assumed
to move only outside of the core, because these degrees of freedom are enough to explain many
part of the properties of the nuclei heavier than the core. This assumption enlarges the region of the
calculation drastically as well.

Therefore, we have to determine the suitable parameter ϵi and Vi j,kl appropriate to relevant degrees
of freedom. Once we have a reliable Hamiltonian, we can calculate the Hamiltonian of many-body
states and diagonalize it, to obtain the binding energies, wave functions, the strength of the transitions
and the other various useful physical quantities. These parameters are often called effective interaction
for the shell model calculations.
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Effective interaction and the model  space

The effective interaction or the effective Hamiltonian have to satisfy the following properties 

A. The interaction is designed for the selected subspace of the whole Hilbert space 

B. The interaction yields the same physics as the original interaction (wave functions and 
eigenvalues)
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where subscripts ind indicate the force induced by the renormalization. In the limit of large cutoff
Λ the induced 3N force Vind is zero by definition, and with the small cutoff, induced 3N becomes
large. For this point, Nogga and his collaborators do a elegant work in 2004 [38]. In this work,
they calculated the Vlowk potential starting from various realistic nucleon-nucleon interaction, and
then calculate the few nucleon system by Faddeev-Yakubovsky equations only with two-body force.
They showed the Λ dependence of the binding energies of 3N or 4N system, which clearly depend
on the size of induced higher-body forces. They claimed that the Λ dependence is not very large at
Λ ≥ 1.0 fm−1 region, which means the induced higher-body force is not so large in this region. They
also compare the calculated binding energies of 3H and 4He to the experimental data and claim that
the value around Λ = 2.0 fm−1 best reproduce the experimental value of both two nuclei. There exists
the three-body force initially in nuclear force because the nucleons are composite particles consist of
quarks. Therefore, the best reproduction of the experimental data means, in turn, the effects of the
initial and induced three or higher-body force cancel out each other in those system.

In their work, only 3N and 4N systems are considered. Therefore, only if we believe that the
higher-body force cancel exactly including all the channel dependence and strength, we can calculate
the many-body system composed of more than four nucleons. However, there are some evidence that
the explicit inclusion of 3N force improve the reproduction of the physical quantities far from the
stability line. Combining those two facts, we may have to think about the cutoff issue again. We will
come back to this point in the framework of EKK method again.

2.2 Renormalization of the medium effects

In this section, we review the second step to calculate the effective interactions for the shell model.
The first step was to remove the repulsive core by changing the basis states. The resultant effective
interaction do not have short-range repulsion or high-momentum component and so do the renor-
malized wavefunctions. Therefore, the Vlowk interaction does not have singularity which prevent us
performing the perturbative calculations.

In the second step, starting from the renormalized interaction, we review a perturbation theory to
calculate the effective interaction designed for suitable model space.

2.2.1 model space

First of all, we define the model space mathematically and clarify the notation. Suppose we describe
a quantum system by the following Hamiltonian

H = H0 + V, (2.16)

where H0 is the unperturbed Hamiltonian and V is the perturbation. In a Hilbert space of dimension
D, we can write down the many-body Schrödinger equation as

H|Ψλ⟩ = Eλ|Ψλ⟩, λ = 1, · · · ,D. (2.17)
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In shell-model calculations, however, the dimension D of the Hamiltonian matrix increases exponen-
tially with the particle number, limiting thereby the applicability of direct diagonalization procedures
to the solution to Eq. (2.17).

In this situation, we introduce a P-space (model space) of a tractable dimension d ≤ D that is
a subspace of the large Hilbert space of dimension D. Correspondingly, we define the projection
operator P onto the P-space, and Q = 1 − P onto its complement. We require that the projection
operators P and Q commute with the unperturbed Hamiltonian H0,

[P,H0] = [Q,H0] = 0. (2.18)

As a consequence, the projection operator P and Q satisfy the following relations,

P2 = P, Q2 = Q (2.19)

PQ = QP = 0, (2.20)

[P,Q] = 0. (2.21)

Figure 2.2: The model space is presented schematically. The black dashed line is the model space
and the gray dashed line is the particle states outside the model space. The circle indicate the inert
core, for example, 16O.

Figure 2.2 shows the schematic image of the model space. The gray circle is the inert core, and the
black dash lines are the model space, and the gray dash-doted lines are the again in the Q-space. The
two particles are play only inside the model space. Two particles are interact within the model space.
The presence of the core and the orbits outside the model space should be considered to affect the Veff

defined in P-space, and be not included to shell-model calculation as explicit degrees of freedom.

2.2.2 Energy-dependent approach

We start our explanation by introducing an energy-dependent effective Hamiltonian. By use of the
projection operators P and Q, we can express Eq. (2.17) in the following partitioned form (λ =
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1, · · · ,D): ⎛
⎜⎜⎜⎜⎜⎝
PHP PVQ
QVP QHQ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
|φλ⟩
|ρλ⟩

⎞
⎟⎟⎟⎟⎟⎠ = Eλ

⎛
⎜⎜⎜⎜⎜⎝
|φλ⟩
|ρλ⟩

⎞
⎟⎟⎟⎟⎟⎠ , (2.22)

where |φλ⟩ = P|Ψλ⟩ is the projection of the true eigenstate |Ψλ⟩ onto the P-space. The Q-space
component is written as |ρλ⟩ = |Ψλ⟩ − |φλ⟩. Then we obtain

|ρλ⟩ = (Eλ − QHQ)−1QVP|φλ⟩ (2.23)

|φλ⟩ = (Eλ − PHP)−1PVQ|ρλ⟩. (2.24)

Substituting these equation, we can decouple the equation to P-space and Q-space respectively as
follows,

(
PHP − 1

Eλ − QHQ
QVP

)
|φλ⟩ = Eλ|φλ⟩ (2.25)

(
QHQ − 1

Eλ − PHP
PVQ

)
|ρλ⟩ = Eλ|ρλ⟩. (2.26)

The first equation is exactly the secure equation defined only in P-space and the second one is in Q-
space. For our purpose of obtaining the effective theory defined in P-space, we solve adapt Eq. (2.25)
and introduce the following Bloch-Horowitz effective Hamiltonian HBH defined purely in the P-space,

HBH(E) = PHP + PVQ
1

E − QHQ
QVP. (2.27)

Then Eq. (2.17) reads,
HBH(Eλ)|φλ⟩ = Eλ|φλ⟩, λ = 1, · · · ,D. (2.28)

Note that Eq. (2.28) requires a self-consistent solution, because HBH(Eλ) depends on the eigenen-
ergy Eλ. In the previous section, we saw the case in which we know the exact solution but still we
need to calculate the effective interaction. In this case, however, we do not know the exact solution
generally, because the Hamiltonian in the full space is supposed to have the intractably large dimen-
sion. Therefore, the energy-dependence of the effective interaction is not a desirable property for the
shell-model calculation, and therefore we adopt the energy-independent approach below.

2.2.3 Energy-independent approach

Next we introduce the energy-independent effective Hamiltonian in the P-space. We first choose d
eigenstates {|Ψi⟩, i = 1, · · · , d} among D solutions of Eq. (2.17), with d ≤ D. Then we require that
|φi⟩ = P|Ψi⟩, the P-space component of the chosen d eigenstates, be described by the d-dimensional
effective Hamiltonian Heff as

Heff |φi⟩ = Ei|φi⟩, i = 1, · · · , d. (2.29)

This energy-independent effective Hamiltonian is most concisely described as

Heff =

d∑

i=1

|φi⟩Ei⟨φ̃i|, (2.30)
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Notation: projection operator P and Q 
P: projection to P-space

Hamiltonian with D-dimension

Effective Hamiltonian with d-dimension (P-space)



Decoupling equation for the KK method
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which is equivalent to Eq. (2.13), appearing in the derivation of Vlowk. In the derivation of Vlowk, P-
space can be interpreted as the low-momentum space whose initial and final momentum k, k′ ≤ Λ
and Q-space is high-momentum space. However, Eq. (2.30) is also just a formal solution because we
do not know the exact solution |Ψi⟩ and its projection to P-space |φi⟩. We need to obtain the effective
interaction Veff without solving the original Schrödinger equation by the direct diagonalization.

To derive the energy-independent effective Hamiltonian Heff , let us consider the following simi-
larity transformation of the Hamiltonian H:

H = e−ωHeω, QωP = ω. (2.31)

By construction, the transformed Hamiltonian,H , gives the same eigenenergies as the original Hamil-
tonian H. The corresponding eigenstates |Ψi⟩, however, are transformed into e−ω|Ψi⟩. We require
therefore that the second relation in Eq. (2.31),

QωP = ω, (2.32)

satisfies
Pe−ω|Ψi⟩ = P(1 − ω)|Ψi⟩ = |φi⟩, (2.33)

that is, the transformation does not change the P-space component |φi⟩ of the eigenstates. Here we
used the fact that ω2 = 0. With this transformation, the P-space components of any wave-function is
unchanged.

Then, Our next step includes the determination of ω. The most convenient way to determine ω is
by using the following equation

0 = QHP = QVP − ωPHP + QHQω − ωPVQω, (2.34)

which decouples the P-space part in the transformed Schrödinger equation. Comparing to Eq. (2.27),
starting from this transformed Hamiltonian H , the Bloch-Horowitz Hamiltonian is just PHP. This
means that the P-space part of the transformed Hamiltonian, PHP, is nothing but Heff in Eq. (2.29).
Then the effective Hamiltonian and the effective interaction can be written as

Heff = PHP

= Pe−ωHeωP

= P(1 − ω)H(1 + ω)P

= PHP + PVωP

= PHP + PVQω (2.35)

Veff = PVP + PVQω. (2.36)

We note here that Heff is energy-independent. Furthermore, the derivation of Heff requires the deter-
mination of ω in order to satisfy Eq. (2.34).
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similarity transformation to transform bare interaction to effective interaction

decoupling condition

similarity transformation

bare interaction effective interaction

0

It is needed to solve non-linear decoupling equation



Formal solution of decoupling equation (KK method)
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condition, the following solution need the condition of degenerate unperturbed eigenvalues in P-
space. We first explain the KK method [27] for the degenerate model space. Then we explain the
LS method [28] for the degenerate model space. Both methods eliminate the energy-dependence of
HBH(E) of Eq. (2.27) by introducing the so-called Q̂-box and its energy derivatives, resulting in an
energy-independent effective interaction Heff .

2.3.1 Kuo-Krenciglowa (KK) method

In the KK method, we assume a degenerate model space,

PH0P = ϵ0P. (2.41)

Then Eq. (2.34) reads

(ϵ0 − QHQ)ω = QVP − ωPVP − ωPVQω. (2.42)

The KK method provide us a one possible way to solve this decoupling equation. Multiplying (ϵ0 −
QHQ) from the left,

ω =
1

ϵ0 − QHQ
(QVP − ω (PVP + PVQω))

=
1

ϵ0 − QHQ
(QVP − ωVeff) , (2.43)

using the expression of Veff in Eq. (2.36). Then we obtain the the following iterative form:

ω(n) =
1

ϵ0 − QHQ

(
QVP − ω(n)V (n−1)

eff

)
, (2.44)

where ω(n) and V (n)
eff = PVP + PVQω(n) stand for ω and Veff in the n-th step, respectively.

Now we introduce the important operator called Q̂-box as follows:

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP,

Q̂k(E) =
1
k!

dkQ̂(E)
dEk . (2.45)

The Q̂-box is clearly defined as an operator act in P-space. Intuitively this quantity stands for the
interacting matrix which the P-space wavefunction having energy E makes excited to Q-space, and
propagate in Q-space, and then makes it back to P-space again.

Then we immediately arrive at the following iterative formula for V (n)
eff :

V (n)
eff = Q̂(ϵ0) +

∞∑

k=1

Q̂k(ϵ0){V (n−1)
eff }k. (2.46)

In the limit of n → ∞, Eq. (2.46) gives Veff = V (∞)
eff , if the iteration converges. The first term of

Eq. (2.46) is Q̂-box itself, which means the effective interaction include the effect of virtual excitation
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Assumption:  the model space is degenerate

22 Chapter 2. Review of effective interaction for the shell model

which is equivalent to Eq. (2.13), appearing in the derivation of Vlowk. In the derivation of Vlowk, P-
space can be interpreted as the low-momentum space whose initial and final momentum k, k′ ≤ Λ
and Q-space is high-momentum space. However, Eq. (2.30) is also just a formal solution because we
do not know the exact solution |Ψi⟩ and its projection to P-space |φi⟩. We need to obtain the effective
interaction Veff without solving the original Schrödinger equation by the direct diagonalization.

To derive the energy-independent effective Hamiltonian Heff , let us consider the following simi-
larity transformation of the Hamiltonian H:

H = e−ωHeω, QωP = ω. (2.31)

By construction, the transformed Hamiltonian,H , gives the same eigenenergies as the original Hamil-
tonian H. The corresponding eigenstates |Ψi⟩, however, are transformed into e−ω|Ψi⟩. We require
therefore that the second relation in Eq. (2.31),

QωP = ω, (2.32)

satisfies
Pe−ω|Ψi⟩ = P(1 − ω)|Ψi⟩ = |φi⟩, (2.33)

that is, the transformation does not change the P-space component |φi⟩ of the eigenstates. Here we
used the fact that ω2 = 0. With this transformation, the P-space components of any wave-function is
unchanged.

Then, Our next step includes the determination of ω. The most convenient way to determine ω is
by using the following equation

0 = QHP = QVP − ωPHP + QHQω − ωPVQω, (2.34)

which decouples the P-space part in the transformed Schrödinger equation. Comparing to Eq. (2.27),
starting from this transformed Hamiltonian H , the Bloch-Horowitz Hamiltonian is just PHP. This
means that the P-space part of the transformed Hamiltonian, PHP, is nothing but Heff in Eq. (2.29).
Then the effective Hamiltonian and the effective interaction can be written as

Heff = PHP

= Pe−ωHeωP

= P(1 − ω)H(1 + ω)P

= PHP + PVωP

= PHP + PVQω (2.35)

Veff = PVP + PVQω. (2.36)

We note here that Heff is energy-independent. Furthermore, the derivation of Heff requires the deter-
mination of ω in order to satisfy Eq. (2.34).

A possible solution of decoupling equation

Introduce Q-box defined as an operator in P-space

Iterative equation for deriving the Effective interaction for degenerate model space
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Using the expression of interaction picture, time-development operator is defined as the operator
to develop the wave functions at the time t′ to t, that is,

|Ψ(t)⟩ = U(t, t′)|Ψ(t′)⟩ (2.60)

and with the Dyson equation the time-development operator is written down as the following pertur-
bative form,

U(t, t′) = lim
ϵ→0

lim
t′→−∞(1−iϵ)

∞∑

n=0

(−i)n

n!

∫ t

t′
dt1

∫ t

t′
dt2 · · ·

∫ t

t′
dtnT [H1(t1)H1(t2) · · ·H1(tn)]. (2.61)

Applying Eq. (2.59) with the notation in Eq. (2.53), the creation and annihilation operators of
nucleon in interaction picture are written down simply as

ai(t) = e−iϵitai

a†i (t) = eiϵita†i . (2.62)

Since the time-development is factorized out in this expression, one can evaluate time-development
operator shown in Eq. (2.61) as a diagrammatic form in a usual manner.

Now we consider the states defined in the P-space, called parent states. First we chose the D-
solutions of Eq. (2.57). Then consider a projection from the eigenvector |Ψλ⟩ to |ρλ⟩, |ρλ⟩ being a
member of P-space wave function. Therefore, the parent states |ρλ⟩ can be expanded with basis space
of P-space,

|ρλ⟩ =
d∑

α=1

C(λ)
α |ψα⟩. (2.63)

Taking the true eigenstates |Ψλ⟩ linearly independent, we can choose the projection such that |ρλ⟩
satisfies the following orthogonality conditions,

⟨ρλ|PΨµ⟩ = 0 (λ ! µ = 1, 2, · · · ,D). (2.64)

Note that the parent states |ρλ⟩ is only a mathematical tool, because |ρλ⟩ can be calculated only know-
ing the effective Hamiltonian Heff . This projection is not available until we know the final result
Heff . Therefore, final results should not depend on the knowledge of |ρλ⟩. We demonstrate the results
actually does not include |ρλ⟩ explicitly.

Using the orthogonality condition Eq. (2.64), the parent states correspond to true eigenstates by
the following equation,

|Ψλ⟩
⟨ρλ|Ψλ⟩

= lim
ϵ→0

lim
t′→−∞(1−iϵ)

U(0, t′)|ρλ⟩
⟨ρλ|U(0, t′)|ρλ⟩

(2.65)

and therefore,

H
U(0,−∞)|ρλ⟩
⟨ρλ|U(0,−∞)|ρλ⟩

= Eλ
U(0,−∞)|ρλ⟩
⟨ρλ|U(0,−∞)|ρλ⟩

. (2.66)
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Now we consider the states defined in the P-space, called parent states. First we chose the D-
solutions of Eq. (2.57). Then consider a projection from the eigenvector |Ψλ⟩ to |ρλ⟩, |ρλ⟩ being a
member of P-space wave function. Therefore, the parent states |ρλ⟩ can be expanded with basis space
of P-space,

|ρλ⟩ =
d∑

α=1

C(λ)
α |ψα⟩. (2.63)

Taking the true eigenstates |Ψλ⟩ linearly independent, we can choose the projection such that |ρλ⟩
satisfies the following orthogonality conditions,

⟨ρλ|PΨµ⟩ = 0 (λ ! µ = 1, 2, · · · ,D). (2.64)

Note that the parent states |ρλ⟩ is only a mathematical tool, because |ρλ⟩ can be calculated only know-
ing the effective Hamiltonian Heff . This projection is not available until we know the final result
Heff . Therefore, final results should not depend on the knowledge of |ρλ⟩. We demonstrate the results
actually does not include |ρλ⟩ explicitly.

Using the orthogonality condition Eq. (2.64), the parent states correspond to true eigenstates by
the following equation,

|Ψλ⟩
⟨ρλ|Ψλ⟩

= lim
ϵ→0

lim
t′→−∞(1−iϵ)

U(0, t′)|ρλ⟩
⟨ρλ|U(0, t′)|ρλ⟩

(2.65)

and therefore,

H
U(0,−∞)|ρλ⟩
⟨ρλ|U(0,−∞)|ρλ⟩

= Eλ
U(0,−∞)|ρλ⟩
⟨ρλ|U(0,−∞)|ρλ⟩

. (2.66)

Time-dependent operator in interaction picture

Parent state: projection of P-space eigen-function ψα to P-space
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This imaginary time development leads us to a d lowest eigenenergies Eλ with true eigenstates of
|Ψλ⟩ with non-zero overlap to P-space. In the actual calculation, however, for we only calculate the
effective interactions approximately, we might not necessarily obtain the lowest D eigenvalues.

Equation (2.65) can be expressed by the basis states in P-space |ψλ⟩ instead of |ρλ⟩, using the
expansion in Eq. (2.63) as follows,

D∑

α=1

C(λ)
α H

U(0,−∞)|ψλ⟩
⟨ρλ|U(0,−∞)|ρλ⟩

=

D∑

β=1

C(λ)
β Eλ

U(0,−∞)|ψλ⟩
⟨ρλ|U(0,−∞)|ρλ⟩

. (2.67)

Therefore, HU(0,−∞) is nearly the effective interaction Heff defined in P-space. However, the
perturbative expansion of HU(0,−∞) leads a divergence immediately, because of the zero energy
denominator.

The main point of KK method is the removal of those divergence. We will see that we can factorize
the divergent part of Eq. (2.67), and cancel them out. We use the familiar factorization theorem and
the proof will be presented in Appendix B. The factorization theorem tells us that the diagram consist
of several disconnected pieces can be evaluated by the product of those diagrams. We factorize the
numerator and denominators in Eq. (2.67), focusing on the states consist of two-particle plus the inert
core.

Let us start from the numerator. The factor U(0,−∞)|ψα⟩ include all the contribution of time
development of two particles plus the core states. Then, we can factorize the contribution which has
no connection to any of the valence states as follows:

U(0,−∞)|ψα⟩ = UV(0,−∞)a†i a†j |c⟩ × U(0,−∞)|c⟩, (2.68)

where the subscript V indicates the fact that the diagram has at least one connected valence line.
The first factor indicate the contribution starting from two particles plus core and the second factor
is considered to be insertion of bubble diagrams and the contribution terminate at t = 0 as a states
with equal numbers of particle and hole states. We can express the consideration explicitly using
factorization theorem again,

U(0,−∞)|c⟩ = UQ(0,−∞)|c⟩ × ⟨c|U(0,−∞)|c⟩, (2.69)

where the subscript Q means the diagram terminate as the state of Q-space at t = 0.
The first term of Eq. (2.68) UV(0,−∞)|ψα⟩ experience the similar decomposition as Eq. (2.69). As

a final states of the time development by UV(0,−∞), the states results in the states within P-space and
the states within Q-space at the time t = 0, that is,

UV(0,−∞)|ψα⟩ = |χP⟩ + |χQ⟩. (2.70)

where |χP⟩ is the term which terminate at t = 0 as P-space state and |χQ⟩ terminate as Q-space state.
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Using the fact that

⟨ψβ|UVQ(0,−∞)|ψα⟩ = δαβ, (2.80)

multiplying ⟨ψσ| from the left,

d∑

γ=1

b(λ)
γ ⟨ψσ|HUL(0,−∞)|ψλ⟩ = Eλ|ψσ⟩. (2.81)

Then we obtain the following secular equation defined only within P-space,

PHeffP|Ψλ⟩ = EλP|Ψλ⟩ (2.82)

where Heff is determined by

Heff = ⟨ψσ|HUL(0,−∞)|ψλ⟩. (2.83)

From Eq. (2.82), we can extract the core degrees of freedom. If the final interaction does not finish
with valence particles, it will give the energy of the core. Therefore, defining H0(V) and H1(V) as
those related to valence particles, we can extract the energy of the core as follows,

PHeffP|Ψα⟩ = (Eα − EC)P|Ψα⟩ (2.84)

where

Heff = ⟨ψσ|(H0(V) + H1(V))UL(0,−∞)|ψλ⟩. (2.85)

The presence of H0(V) and H1(V) means the diagram must terminate with valence particle at the time
t = 0. Then, the next problem is how to calculate the ⟨ψβ|UVQ(0,−∞)|ψα⟩ in a practical way. This
factor corresponds to the first factor of Eq. (2.74) and is calculated by the evaluation of Q̂-box and its
folded diagram.

In summary, the effective interaction Veff can be calculated as follows,

Veff = Q̂(ϵ0) − Q̂′(ϵ0)
∫

Q̂(ϵ0) + Q̂′(ϵ0)
∫

Q̂(ϵ0)
∫

Q̂(ϵ0) · · · , (2.86)

where the integrals represent the folding procedures, and Q̂′ represents Q̂-box contributions which
have at least two nucleon-nucleon interaction vertices. Note that, in order to have a degenerate P-
space energy, ϵ0, the single-particle energies in Eq. (2.53) for valence single-particle states, ϵa, ϵb, . . .

are completely degenerate. Equation (2.86) is the basis of the perturbative expansion of Veff in the
folded diagram theory (see for example Ref. [11] for more details).

There are two points to be noted here. First, because we cannot evaluate the Q̂-box defined in
Eq. (2.45) exactly (which implies including all terms to infinite order), we use the perturbative expan-
sion in Eq. (2.71), which we can currently evaluate up to the third order in the nucleon-nucleon in-
teraction. Second, the valence-linked diagram theorem states that we need to retain only the valence-
linked part (See Fig. 2.3), i.e., unlinked parts can be proved to cancel among themselves [11, 23]. At

Effective interaction Veff include Q-box and its infinite order repetition
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For the further decomposition, we introduce two things. One is Q̂-box and the other is folded
diagrams. The Q̂-box is defined as

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP

= PVP + PVQ
1

E − QH0Q
QVP + PVQ

1
E − QH0Q

QVQ
1

E − QH0Q
QVP + · · · (2.71)

which is already appeared in the formal theory of KK method and LS method. The Q̂-box is the
summation of all the contribution of the “irreducible” diagrams. Here the term “irreducible” means
that the diagrams cannot be divided into two pieces by cutting the P-space state by a horizontal line.
Therefore, in the evaluation of Q̂-box, we do not face to the divergence caused by the zero energy-
denominator, if the P-space is degenerate and the unperturbed Q-space energy is different from that
of P-space.

Next, we move to the folded diagrams. Let us consider the diagram which includes two vertices
at t = t1 and t = t2, with t1 > t2. When the state before t = t2 and after t = t2 are the same, clearly we
face to the zero denominator. This divergence can be factorized as follows:

❝❝t1
t2

= ❝t1 × ❝t2 − ❝t1

❝t2
!
! . (2.72)

In the left hand side, 0 > t1 > t2, and in the right hand side, the first term does not have the restriction
of ordering and the second term is the corresponding subtraction of 0 > t2 > t1. Suppose the railed line
is in Q-space and the other is in P-space. Since P-space is degenerate, the left hand side is obviously
divergent. In the right hand side, the divergence is only appearing in the second factor in the first
term. In this sense, Eq. (2.72) shows the minimal example of factorization of the divergence. Our
purpose of implement the factorization theorem and folded diagram procedure is that we factorize the
divergence and cancel them so that we obtain the finite physical results.

Now we come back to the factorization of Eq. (2.70). Both the first and second term include the
divergence. The first term |χP⟩, which terminate at t = 0 as P-space state, is expressed as

|χP⟩ = + ✉ + ✉✉ + ✉✉✉ + · · · (2.73)

where filled circle represent the Q̂-box and the line is the two-body states within P-space. Since we
are considering of degenerate P-space, this leads a clear divergence. On the other hand, the second
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the same time, the eigenvalue Ei in Eq. (2.56) changes its meaning; it is no longer the total energy of
the system, but is now the total energy measured from the true ground state energy of the core.

In actual calculations, however, we do not calculate Veff order by order using Eq. (2.86). Since
the contribution of folded diagrams can be calculated by energy derivatives when the model space is
degenerate [11], we can translate Eq. (2.86) into the following equation

Veff = Q̂(ϵ0) +
∞∑

k=1

Q̂k(ϵ0){Veff}k, (2.87)

The above expression clearly shows that the iterative solution of Eq. (2.46) converges Veff in the limit
of n→ ∞.

We can summarize the KK method as follows; we calculate the valence-linked Q̂-box diagrams
(usually up to second or third order) and the corresponding energy derivatives at the degenerate P-
space energy ϵ0, and carry out the iteration of Eq. (2.46) starting from V (0)

eff = V . This procedure
ultimately gives Veff = V (∞)

eff .

Figure 2.3: Valence-linked Q̂-box diagrams up to second order in V .

At the end, we stress again that the above KK method can yield Veff only for a degenerate model
space. Suppose we are working with the harmonic oscillator shell model of 18O, treating 16O as the
core. If we take the P-space composed only of the degenerate sd-shell, the above KK method works
well as shown by many applications (see for example Ref. [26]). If, on the other hand, we take an

Diagrams appearing in 2nd order Q-box

Q-box is the ingredient of effective interaction and approximated by perturbation theory 

P is proj. operator to 
 model space 
Q=1-P

24 Chapter 2. Review of effective interaction for the shell model

condition, the following solution need the condition of degenerate unperturbed eigenvalues in P-
space. We first explain the KK method [27] for the degenerate model space. Then we explain the
LS method [28] for the degenerate model space. Both methods eliminate the energy-dependence of
HBH(E) of Eq. (2.27) by introducing the so-called Q̂-box and its energy derivatives, resulting in an
energy-independent effective interaction Heff .

2.3.1 Kuo-Krenciglowa (KK) method

In the KK method, we assume a degenerate model space,

PH0P = ϵ0P. (2.41)

Then Eq. (2.34) reads

(ϵ0 − QHQ)ω = QVP − ωPVP − ωPVQω. (2.42)

The KK method provide us a one possible way to solve this decoupling equation. Multiplying (ϵ0 −
QHQ) from the left,

ω =
1

ϵ0 − QHQ
(QVP − ω (PVP + PVQω))

=
1

ϵ0 − QHQ
(QVP − ωVeff) , (2.43)

using the expression of Veff in Eq. (2.36). Then we obtain the the following iterative form:

ω(n) =
1

ϵ0 − QHQ

(
QVP − ω(n)V (n−1)

eff

)
, (2.44)

where ω(n) and V (n)
eff = PVP + PVQω(n) stand for ω and Veff in the n-th step, respectively.

Now we introduce the important operator called Q̂-box as follows:

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP,

Q̂k(E) =
1
k!

dkQ̂(E)
dEk . (2.45)

The Q̂-box is clearly defined as an operator act in P-space. Intuitively this quantity stands for the
interacting matrix which the P-space wavefunction having energy E makes excited to Q-space, and
propagate in Q-space, and then makes it back to P-space again.

Then we immediately arrive at the following iterative formula for V (n)
eff :

V (n)
eff = Q̂(ϵ0) +

∞∑

k=1

Q̂k(ϵ0){V (n−1)
eff }k. (2.46)

In the limit of n → ∞, Eq. (2.46) gives Veff = V (∞)
eff , if the iteration converges. The first term of

Eq. (2.46) is Q̂-box itself, which means the effective interaction include the effect of virtual excitation
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eff }k. (2.46)

In the limit of n → ∞, Eq. (2.46) gives Veff = V (∞)
eff , if the iteration converges. The first term of

Eq. (2.46) is Q̂-box itself, which means the effective interaction include the effect of virtual excitation

Folded diagram technique (Kuo-
Krenciglowa method) to include the 
infinite time repetitions of Q-box 
(but only for the degenerate model 
space)
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meaning that the contribution is linked diagrams.
Using the fact that

⟨ψβ|UVQ(0,−∞)|ψα⟩ = δαβ, (2.80)

and multiplying ⟨ψσ| from the left we obtain,

d∑

γ=1

b(λ)
γ ⟨ψσ|HUL(0,−∞)|ψλ⟩ = Eλ|ψσ⟩. (2.81)

Then we obtain the following secular equation defined only within P-space,

PHeffP|Ψλ⟩ = EλP|Ψλ⟩ (2.82)

where Heff is determined by

Heff = ⟨ψσ|HUL(0,−∞)|ψλ⟩. (2.83)

From Eq. (2.82), we can extract the core degrees of freedom. If the final interaction does not finish
with valence particles, it gives the energy of the core. Therefore, defining H0(V) and H1(V) as those
related to valence particles, we can extract the energy of the core as follows,

PHeffP|Ψα⟩ = (Eα − EC)P|Ψα⟩ (2.84)

where

Heff = ⟨ψσ|(H0(V) + H1(V))UL(0,−∞)|ψλ⟩. (2.85)

The presence of H0(V) and H1(V) means the diagram must terminate with valence particles at the
time t = 0. Then we have succeeded to extract the energy of the core. The next problem is how
to calculate the ⟨ψβ|UVQ(0,−∞)|ψα⟩ in a practical way. This factor corresponds to the first factor of
Eq. (2.74) and is calculated by the evaluation of Q̂-box and its folded diagram.

In summary, the effective interaction Veff can be calculated as follows,

Veff = Q̂(ϵ0) − Q̂′(ϵ0)
∫

Q̂(ϵ0) + Q̂′(ϵ0)
∫

Q̂(ϵ0)
∫

Q̂(ϵ0) · · · , (2.86)

where the integrals represent the folding procedures, and Q̂′ represents Q̂-box contributions which
have at least two NN interaction vertices. Note that, in order to have a degenerate P-space energy, ϵ0,
the single-particle energies in Eq. (2.53) for valence single-particle states, ϵa, ϵb, . . . are completely
degenerate. Equation (2.86) is the basis of the perturbative expansion of Veff in the folded diagram
theory (see for example Ref. [11] for more details).

There are two points to be noted here. First, because we cannot evaluate the Q̂-box defined
in Eq. (2.45) exactly (which implies including all terms to infinite order), we use the perturbative
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given schematically by

Q̂(E) =
∏ V

E − (
∑
ϵa +

∑
ϵp −

∑
ϵh)int
, (3.20)

where the subscript int indicates intermediate states between two interaction vertices. Note that the
parameter E appears in all the denominators in the EKK method.

To make our diagram rules clear, let us see an example. The diagram shown in Fig. 3.2 is a

Figure 3.2: Core-polarization diagram as a second-order contribution to the Q̂-box. The energy de-
nominator is written as D1 and D2.

member of Q̂-box diagram. The diagram is a contribution from the second-order term in Eq. (2.71).
The energy denominator for the lower dashed line is denoted as D1 and for the intermediate state we
use D2, and the energy denominator of this diagram should be calculated as D1 − D2. Therefore, it
gives the following contribution to Q̂(E)

Fig. 3.2 (EKK)→ Vah,cpVpb,hd

E − ϵc − ϵb − ϵp + ϵh
. (3.21)

If we on the other hand employ the KK method in order to calculate the contribution to Q̂(ϵ0) from
Fig. 3.2, we would get

Fig. 3.2 (KK) → Vah,cpVpb,hd

(ϵc + ϵd) − ϵc − ϵp + ϵh − ϵb

=
Vah,cpVpb,hd

−ϵp + ϵh
(3.22)

where, in going to the second line, we have used the fact that the P-space is degenerate, and therefore
ϵa = ϵb = ϵc = ϵd and ϵc + ϵd = ϵ0.

Two points should be noted from the above example; first, in a degenerate model space, the EKK
result Eq. (3.21) with E = ϵ0 coincides with the KK result Eq. (3.22). This is a direct consequence
of the fact that the EKK formula contains the KK formula as a special case. Second, we can see the
problem of divergence of the KK formula applied naively to a non-degenerate model space. Consider
the case of 18O as an example, and let the P-space consist of two major shells (1s0d and 1p0 f -shells).
The single particle states are taken as the eigenstates of harmonic oscillator potential. Then, the
denominator of the first line in Eq. (3.22) vanishes for b, c, p ∈ 1s0d-shell, a, d ∈ 1p0 f -shell, and
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(A) Folded diagram theory requires assumption that the model space is degenerate 

(B) Naive perturbation theory leads a divergence in non-degenerate model space

Example

Energy denominator is zero 
when εd - εb = εp - εh

We need a theory which satisfies 

(a)The assumption of degenerate 
model space is removed 

(b)Avoid the divergence 
appearing in Q-box diagrams 

→ EKK method as a re-summation 
scheme of KK method
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Then we impose the decoupling condition for the transformed HamiltonianH ,

0 = QHP = QVP − ωPHP + QHQω − ωPVQω, (3.3)

which decouples the P-space Schrödinger equation to Q-space.
Now we rewrite Eq. (3.3) as

(E − QHQ)ω = QVP − ωPH̃P − ωPVQω, (3.4)

where
H̃ = H − E (3.5)

is a shifted Hamiltonian obtained by the introduction of the energy parameter E. Equation (3.4) plays
the same role in the EKK method as Eq. (2.42) does in the KK method. The difference is that we
introduce a parameter E and replace PVP by PH̃P. By solving Eq. (3.4) iteratively as in the KK
method, we obtain the following iterative scheme to calculate the effective Hamiltonian Heff instead
of Veff ,

H̃(n)
eff = H̃BH(E) +

∞∑

k=1

Q̂k(E){H̃(n−1)
eff }k, (3.6)

where
H̃eff = Heff − E, H̃BH(E) = HBH(E) − E, (3.7)

and H̃(n)
eff stands for H̃eff at the n-th step. The effective Hamiltonian Heff is obtained as Heff = H(∞)

eff , and
satisfies

H̃eff = H̃BH(E) +
∞∑

k=1

Q̂k(E){H̃eff}k. (3.8)

The effective interaction, Veff, is then calculated by Eq. (2.36) as Veff = Heff − PH0P. Here the
definition of Q̂-box is the same as KK method, that is,

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP, (3.9)

and the derivative of Q̂-box is

Q̂k(E) =
1
k!

dkQ̂(E)
dEk . (3.10)

Let us now compare the EKK and the KK methods. First, and most importantly, the above EKK
method does not require that the model space is degenerate. It can, therefore, be applied naturally to
a valence space composed of several shells. Second, Eq. (3.6) changes H̃eff , while Eq. (2.46) changes
only Veff at each step of the iterative process. Third, in order to perform the iterative step of Eq. (3.6),
we need to calculate Q̂k(E) at the arbitrarily specified energy E, instead of at ϵ0 for Eq. (2.46).

Equation (3.8) is interpreted as the Taylor series expansion of H̃eff around H̃BH(E), and changing E
corresponds to shifting the origin of the expansion, and therefore to a re-summation of the series. This
explains why the left hand side of Eq. (3.8) is independent of E, while each term on the right hand
side depends on E. This in turn means that we can tune the parameter E in Eq. (3.8) to accelerate the
convergence of the series on the right hand side, a feature which we will exploit in actual calculations.
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Decoupling equation

Introduce energy parameter E
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Points: 
1. Arbitrary energy parameter E is introduced 

  → results do not depend on the choice of E 
2. Veff is substituted by Heff 
3. Q-box and its derivatives are not changed, but evaluated at E
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1, · · · ,D): ⎛
⎜⎜⎜⎜⎜⎝
PHP PVQ
QVP QHQ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
|φλ⟩
|ρλ⟩

⎞
⎟⎟⎟⎟⎟⎠ = Eλ

⎛
⎜⎜⎜⎜⎜⎝
|φλ⟩
|ρλ⟩

⎞
⎟⎟⎟⎟⎟⎠ , (2.22)

where |φλ⟩ = P|Ψλ⟩ is the projection of the true eigenstate |Ψλ⟩ onto the P-space. The Q-space
component is written as |ρλ⟩ = |Ψλ⟩ − |φλ⟩. Then we obtain

|ρλ⟩ = (Eλ − QHQ)−1QVP|φλ⟩ (2.23)

|φλ⟩ = (Eλ − PHP)−1PVQ|ρλ⟩. (2.24)

Substituting these equation, we can decouple the equation to P-space and Q-space respectively as
follows,

(
PHP − 1

Eλ − QHQ
QVP

)
|φλ⟩ = Eλ|φλ⟩ (2.25)

(
QHQ − 1

Eλ − PHP
PVQ

)
|ρλ⟩ = Eλ|ρλ⟩. (2.26)

The first equation is exactly the secure equation defined only in P-space and the second one is in Q-
space. For our purpose of obtaining the effective theory defined in P-space, we solve adapt Eq. (2.25)
and introduce the following Bloch-Horowitz effective Hamiltonian HBH defined purely in the P-space,

HBH(E) = PHP + PVQ
1

E − QHQ
QVP. (2.27)

Then Eq. (2.17) reads,
HBH(Eλ)|φλ⟩ = Eλ|φλ⟩, λ = 1, · · · ,D. (2.28)

Note that Eq. (2.28) requires a self-consistent solution, because HBH(Eλ) depends on the eigenen-
ergy Eλ. In the previous section, we saw the case in which we know the exact solution but still we
need to calculate the effective interaction. In this case, however, we do not know the exact solution
generally, because the Hamiltonian in the full space is supposed to have the intractably large dimen-
sion. Therefore, the energy-dependence of the effective interaction is not a desirable property for the
shell-model calculation, and therefore we adopt the energy-independent approach below.

2.2.3 Energy-independent approach

Next we introduce the energy-independent effective Hamiltonian in the P-space. We first choose d
eigenstates {|Ψi⟩, i = 1, · · · , d} among D solutions of Eq. (2.17), with d ≤ D. Then we require that
|φi⟩ = P|Ψi⟩, the P-space component of the chosen d eigenstates, be described by the d-dimensional
effective Hamiltonian Heff as

Heff |φi⟩ = Ei|φi⟩, i = 1, · · · , d. (2.29)

This energy-independent effective Hamiltonian is most concisely described as

Heff =

d∑

i=1

|φi⟩Ei⟨φ̃i|, (2.30)



Extended KK method as a re-summation of the 
perturbative series
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3.2 Extended Kuo-Krenciglowa method in many-body system

Here we derive the effective Hamiltonian Heff of the Extended Kuo-Krenciglowa (EKK) method, with
an emphasis on its similarity with the KK method discussed in the Chap. 2.

3.2.1 Derivation of the Extended Kuo-Krenciglowa method

We consider first the general situation where the energies of the valence single-particle states in PH0P
are not necessarily degenerate. In this case, we have to apply the EKK formula Eq. (3.6) to our many-
body systems.

We start from the Hamiltonian in many-body system,

H = H0 + V

=
∑

ϵαa†αaα +
1
2

∑

αβ,γδ

Vαβ,γδa†αa†βaδaγ, (3.11)

We can confirm that, in order to derive Eq. (3.6), we need to change the decomposition Eq. (2.53) of
the Hamiltonian in the KK method. Suppose we decompose the total Hamiltonian into the following
unperturbed Hamiltonian H′0 and the perturbation V ′

H′0 = PEP + QH0Q

V ′ = V − P(E − H0)P, (3.12)

or in the matrix form,

H = H′0 + V ′

=

⎛
⎜⎜⎜⎜⎜⎝
E 0
0 QH0Q

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
PH̃P PVQ
QVP QVQ

⎞
⎟⎟⎟⎟⎟⎠ , (3.13)

where H̃ ≡ H−E. With the above unperturbed Hamiltonian H′0 in Eq. (3.12), we can treat the P-space
as being degenerate at the energy E, and therefore we can follow the derivation of Eq. (2.86) in the
KK method, to achieve

H̃eff = H̃BH(E) − Q̂′(E)
∫

H̃BH(E) + Q̂′(E)
∫

H̃BH(E)
∫

H̃BH(E) · · · , (3.14)

which is then converted into

H̃eff = H̃BH(E) +
dQ̂(E)

dE
H̃eff +

1
2!

d2Q̂(E)
dE2 {H̃eff}2 + · · · . (3.15)

The point is that the derivative of Q̂-box is the same as derivative of HBH. Since the Q̂-box include
the interaction of QVP,PVQ and QVQ, all the interaction vertices are not affected by the shift of
unperturbed Hamiltonian from H0 to H′0.

EKK method is derived with the following re-interpretation of the Hamiltonian 

Change PH0P part of the unperturbed Hamiltonian
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For the further decomposition, we introduce two things. One is Q̂-box and the other is folded
diagrams. The Q̂-box is defined as

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP

= PVP + PVQ
1

E − QH0Q
QVP + PVQ

1
E − QH0Q

QVQ
1

E − QH0Q
QVP + · · · (2.71)

which is already appeared in the formal theory of KK method and LS method. The Q̂-box is the
summation of all the contribution of the “irreducible” diagrams. Here the term “irreducible” means
that the diagrams cannot be divided into two pieces by cutting the P-space state by a horizontal line.
Therefore, in the evaluation of Q̂-box, we do not face to the divergence caused by the zero energy-
denominator, if the P-space is degenerate and the unperturbed Q-space energy is different from that
of P-space.

Next, we move to the folded diagrams. Let us consider the diagram which includes two vertices
at t = t1 and t = t2, with t1 > t2. When the state before t = t2 and after t = t2 are the same, clearly we
face to the zero denominator. This divergence can be factorized as follows:

❝❝t1
t2

= ❝t1 × ❝t2 − ❝t1

❝t2
!
! . (2.72)

In the left hand side, 0 > t1 > t2, and in the right hand side, the first term does not have the restriction
of ordering and the second term is the corresponding subtraction of 0 > t2 > t1. Suppose the railed line
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|χP⟩ = + ✉ + ✉✉ + ✉✉✉ + · · · (2.73)
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⎛
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|ρλ⟩

⎞
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⎛
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|φλ⟩
|ρλ⟩

⎞
⎟⎟⎟⎟⎟⎠ , (2.22)

where |φλ⟩ = P|Ψλ⟩ is the projection of the true eigenstate |Ψλ⟩ onto the P-space. The Q-space
component is written as |ρλ⟩ = |Ψλ⟩ − |φλ⟩. Then we obtain

|ρλ⟩ = (Eλ − QHQ)−1QVP|φλ⟩ (2.23)

|φλ⟩ = (Eλ − PHP)−1PVQ|ρλ⟩. (2.24)

Substituting these equation, we can decouple the equation to P-space and Q-space respectively as
follows,

(
PHP − 1

Eλ − QHQ
QVP

)
|φλ⟩ = Eλ|φλ⟩ (2.25)

(
QHQ − 1

Eλ − PHP
PVQ

)
|ρλ⟩ = Eλ|ρλ⟩. (2.26)

The first equation is exactly the secure equation defined only in P-space and the second one is in Q-
space. For our purpose of obtaining the effective theory defined in P-space, we solve adapt Eq. (2.25)
and introduce the following Bloch-Horowitz effective Hamiltonian HBH defined purely in the P-space,

HBH(E) = PHP + PVQ
1

E − QHQ
QVP. (2.27)

Then Eq. (2.17) reads,
HBH(Eλ)|φλ⟩ = Eλ|φλ⟩, λ = 1, · · · ,D. (2.28)

Note that Eq. (2.28) requires a self-consistent solution, because HBH(Eλ) depends on the eigenen-
ergy Eλ. In the previous section, we saw the case in which we know the exact solution but still we
need to calculate the effective interaction. In this case, however, we do not know the exact solution
generally, because the Hamiltonian in the full space is supposed to have the intractably large dimen-
sion. Therefore, the energy-dependence of the effective interaction is not a desirable property for the
shell-model calculation, and therefore we adopt the energy-independent approach below.

2.2.3 Energy-independent approach

Next we introduce the energy-independent effective Hamiltonian in the P-space. We first choose d
eigenstates {|Ψi⟩, i = 1, · · · , d} among D solutions of Eq. (2.17), with d ≤ D. Then we require that
|φi⟩ = P|Ψi⟩, the P-space component of the chosen d eigenstates, be described by the d-dimensional
effective Hamiltonian Heff as

Heff |φi⟩ = Ei|φi⟩, i = 1, · · · , d. (2.29)

This energy-independent effective Hamiltonian is most concisely described as

Heff =

d∑

i=1

|φi⟩Ei⟨φ̃i|, (2.30)

24 Chapter 2. Review of effective interaction for the shell model

condition, the following solution need the condition of degenerate unperturbed eigenvalues in P-
space. We first explain the KK method [27] for the degenerate model space. Then we explain the
LS method [28] for the degenerate model space. Both methods eliminate the energy-dependence of
HBH(E) of Eq. (2.27) by introducing the so-called Q̂-box and its energy derivatives, resulting in an
energy-independent effective interaction Heff .

2.3.1 Kuo-Krenciglowa (KK) method

In the KK method, we assume a degenerate model space,

PH0P = ϵ0P. (2.41)

Then Eq. (2.34) reads

(ϵ0 − QHQ)ω = QVP − ωPVP − ωPVQω. (2.42)

The KK method provide us a one possible way to solve this decoupling equation. Multiplying (ϵ0 −
QHQ) from the left,

ω =
1

ϵ0 − QHQ
(QVP − ω (PVP + PVQω))

=
1

ϵ0 − QHQ
(QVP − ωVeff) , (2.43)

using the expression of Veff in Eq. (2.36). Then we obtain the the following iterative form:

ω(n) =
1

ϵ0 − QHQ

(
QVP − ω(n)V (n−1)

eff

)
, (2.44)

where ω(n) and V (n)
eff = PVP + PVQω(n) stand for ω and Veff in the n-th step, respectively.

Now we introduce the important operator called Q̂-box as follows:

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP,

Q̂k(E) =
1
k!

dkQ̂(E)
dEk . (2.45)

The Q̂-box is clearly defined as an operator act in P-space. Intuitively this quantity stands for the
interacting matrix which the P-space wavefunction having energy E makes excited to Q-space, and
propagate in Q-space, and then makes it back to P-space again.

Then we immediately arrive at the following iterative formula for V (n)
eff :

V (n)
eff = Q̂(ϵ0) +

∞∑

k=1

Q̂k(ϵ0){V (n−1)
eff }k. (2.46)

In the limit of n → ∞, Eq. (2.46) gives Veff = V (∞)
eff , if the iteration converges. The first term of

Eq. (2.46) is Q̂-box itself, which means the effective interaction include the effect of virtual excitation
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Then we impose the decoupling condition for the transformed HamiltonianH ,

0 = QHP = QVP − ωPHP + QHQω − ωPVQω, (3.3)

which decouples the P-space Schrödinger equation to Q-space.
Now we rewrite Eq. (3.3) as

(E − QHQ)ω = QVP − ωPH̃P − ωPVQω, (3.4)

where
H̃ = H − E (3.5)

is a shifted Hamiltonian obtained by the introduction of the energy parameter E. Equation (3.4) plays
the same role in the EKK method as Eq. (2.42) does in the KK method. The difference is that we
introduce a parameter E and replace PVP by PH̃P. By solving Eq. (3.4) iteratively as in the KK
method, we obtain the following iterative scheme to calculate the effective Hamiltonian Heff instead
of Veff ,

H̃(n)
eff = H̃BH(E) +

∞∑

k=1

Q̂k(E){H̃(n−1)
eff }k, (3.6)

where
H̃eff = Heff − E, H̃BH(E) = HBH(E) − E, (3.7)

and H̃(n)
eff stands for H̃eff at the n-th step. The effective Hamiltonian Heff is obtained as Heff = H(∞)

eff , and
satisfies

H̃eff = H̃BH(E) +
∞∑

k=1

Q̂k(E){H̃eff}k. (3.8)

The effective interaction, Veff, is then calculated by Eq. (2.36) as Veff = Heff − PH0P. Here the
definition of Q̂-box is the same as KK method, that is,

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP, (3.9)

and the derivative of Q̂-box is

Q̂k(E) =
1
k!

dkQ̂(E)
dEk . (3.10)

Let us now compare the EKK and the KK methods. First, and most importantly, the above EKK
method does not require that the model space is degenerate. It can, therefore, be applied naturally to
a valence space composed of several shells. Second, Eq. (3.6) changes H̃eff , while Eq. (2.46) changes
only Veff at each step of the iterative process. Third, in order to perform the iterative step of Eq. (3.6),
we need to calculate Q̂k(E) at the arbitrarily specified energy E, instead of at ϵ0 for Eq. (2.46).

Equation (3.8) is interpreted as the Taylor series expansion of H̃eff around H̃BH(E), and changing E
corresponds to shifting the origin of the expansion, and therefore to a re-summation of the series. This
explains why the left hand side of Eq. (3.8) is independent of E, while each term on the right hand
side depends on E. This in turn means that we can tune the parameter E in Eq. (3.8) to accelerate the
convergence of the series on the right hand side, a feature which we will exploit in actual calculations.

KK method EKK method

New parameter E (arbitrary parameter)

• One can take E so as to avoid the divergence ! 
• Final result does not depends on E.
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Let us now compare the EKK and the KK methods. First, and most importantly, the above EKK
method does not require that the model space is degenerate. It can, therefore, be applied naturally to
a valence space composed of several shells. Second, Eq. (3.6) changes H̃eff , while Eq. (2.46) changes
only Veff at each step of the iterative process. Third, in order to perform the iterative step of Eq. (3.6),
we need to calculate Q̂k(E) at the arbitrarily specified energy E, instead of at ϵ0 for Eq. (2.46).

Equation (3.8) is interpreted as the Taylor series expansion of H̃eff around H̃BH(E), and changing E
corresponds to shifting the origin of the expansion, and therefore to a re-summation of the series. This
explains why the left hand side of Eq. (3.8) is independent of E, while each term on the right hand
side depends on E. This in turn means that we can tune the parameter E in Eq. (3.8) to accelerate the
convergence of the series on the right hand side, a feature which we will exploit in actual calculations.

KK method EKK method

e

x = 1 +
1X

k=1

1

k!
x

k

e

x = e

E +
1X

k=1

e

E

k!
(x� E)k

Taylor expansion  
around x=0

Taylor expansion  
around x=E

→ Result does not depend on E



Example: EKK method avoids the divergences
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given schematically by

Q̂(E) =
∏ V

E − (
∑
ϵa +

∑
ϵp −

∑
ϵh)int
, (3.20)

where the subscript int indicates intermediate states between two interaction vertices. Note that the
parameter E appears in all the denominators in the EKK method.

To make our diagram rules clear, let us see an example. The diagram shown in Fig. 3.2 is a

Figure 3.2: Core-polarization diagram as a second-order contribution to the Q̂-box. The energy de-
nominator is written as D1 and D2.

member of Q̂-box diagram. The diagram is a contribution from the second-order term in Eq. (2.71).
The energy denominator for the lower dashed line is denoted as D1 and for the intermediate state we
use D2, and the energy denominator of this diagram should be calculated as D1 − D2. Therefore, it
gives the following contribution to Q̂(E)

Fig. 3.2 (EKK)→ Vah,cpVpb,hd

E − ϵc − ϵb − ϵp + ϵh
. (3.21)

If we on the other hand employ the KK method in order to calculate the contribution to Q̂(ϵ0) from
Fig. 3.2, we would get

Fig. 3.2 (KK) → Vah,cpVpb,hd

(ϵc + ϵd) − ϵc − ϵp + ϵh − ϵb

=
Vah,cpVpb,hd

−ϵp + ϵh
(3.22)

where, in going to the second line, we have used the fact that the P-space is degenerate, and therefore
ϵa = ϵb = ϵc = ϵd and ϵc + ϵd = ϵ0.

Two points should be noted from the above example; first, in a degenerate model space, the EKK
result Eq. (3.21) with E = ϵ0 coincides with the KK result Eq. (3.22). This is a direct consequence
of the fact that the EKK formula contains the KK formula as a special case. Second, we can see the
problem of divergence of the KK formula applied naively to a non-degenerate model space. Consider
the case of 18O as an example, and let the P-space consist of two major shells (1s0d and 1p0 f -shells).
The single particle states are taken as the eigenstates of harmonic oscillator potential. Then, the
denominator of the first line in Eq. (3.22) vanishes for b, c, p ∈ 1s0d-shell, a, d ∈ 1p0 f -shell, and
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KK methodEKK method

• We can choose E to avoid divergence ! 
• Note that the choice of E is arbitrary and should give the same result if 

the Q-box is calculated without any approximation. 
• Inversely, E-dependence is a measure of error coming from the 

approximation



Diagrams appearing in EKK method
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Figure 3.1: The examples of the states consist of core plus two particles. The diagram (i) is in P-space
and (ii) and (iii) is in Q-space.

important to get convinced that in diagram (iii) contains the single particle states of diagram (i), but
as a whole, the state is in Q-space. In diagram (ii), although the state a is in one of the valence orbits,
the two-body state as a whole does not in P-space. Therefore ϵa appears only in the Q-space energy,
while a†a appears in all of the above three states.

To implement the time dependent perturbation theory, we need to move onto the interaction pic-
ture. The interaction picture for those states are different from that of in KK method;

|ψi(t)⟩ =e−iH′0t|ψi⟩ =e−iEt|ψi⟩
{a†aa†p|c⟩}(t) =e−iH′0t{a†aa†p|c⟩} =e−i(ϵa+ϵp)ta†aa†p|c⟩, (3.18)

{a†aa†ba†pah|c⟩}(t) =e−iH′0t{a†aa†ba†pah|c⟩} =e−i(ϵa+ϵb+ϵp−ϵh)ta†aa†ba†pah|c⟩,

where |ψi⟩ is the states of P-space. It is important to notice that Eq. (2.59) is no longer valid for the
Hamiltonian of EKK method. This is because the expression of H′0,

H′0 = PEP + Q
∑

ϵαa†i aiQ (3.19)

include projection operator to the core state wave function in the projection operator P and Q. The
commutation [H0, a] and [H0, a†] is not as simple as that in KK method.

Nevertheless, because Eq. (3.18) holds, we can retain the diagrammatic approach of EKK method
with a small modification of the evaluation of the diagram. The modification is that when we find the
two-body states in the P-space, we replace the energy denominator of that point to E instead of the
sum of single-particle energies. Corresponds to the fact that the diagram (iii) in Fig. 3.1 is in Q-space,
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As the assumption of induction, we assume that the value can be calculated by the product of two
pieces, that is,

S k,l = S k · S ′l (k ≤ n, l ≤ m). (B.4)

Now we consider the quantity S n,m+1, that is, the second piece has m + 1 vertices. Depending on
the position of the last m + 1-th vertex, the sum of the denominator factor can be written as follows:

S n,m+1 = S n,m
1

Dn + D′m+1
+ S n−1,m

1
Dn + D′m+1

1
Dn−1 + D′m+1

+ · · · . (B.5)

Let us label the time of the vertex as (t1, t2, · · · , tn) and (t′1, t
′
2, · · · , t′m, t′m+1). Then, the first term of

Eq. (B.5) is for tn ≤ tm+1 < 0, and the second term is for tn−1 ≤ tm+1 < tn, and so on. Using the
assumption of induction Eq. (B.4), S n,m+1 can be calculated as follows:

S n,m+1 = S n · S ′m
1

Dn + D′m+1
+ S n−1 · S m

1
Dn + D′m+1

1
Dn−1 + D′m+1

+ · · ·

= S n · S ′m
(

1
Dn + D′m+1

(
1 +

Dn

Dn−1 + D′m+1

(
1 +

Dn−1

Dn−2 + D′m+1

(
1 + · · ·

+
D2

D1 + D′m+1

(
1 +

D1

D′m+1

)
· · ·

)

= S n · S ′m ·
1

D′m+1

= S n · S ′m+1. (B.6)

This indicate that the Eq. (B.4) is also valid for the case of S n,m+1. The case of S n+1,m is the same.
Therefore, it is proved that Eq. (B.4) is valid for all the n and m.

B.2 The evaluation of folded diagrams

To show how the folded diagram is calculated, we show the minimal example of the folded diagram
in Fig. B.2. The railed line represent the state γ is in Q-space. The diagram Fig. B.2 is calculated as

t=0

t=t1

t=t2

δ

γ
β

α

Figure B.3: folded diagram differentiation
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(B.2) =
VαβVβγVγδ

(ϵα − ϵγ − (ϵα − ϵβ))(ϵα − ϵγ)

=VαβVβγVγδ

(
(ϵα − ϵγ) − (ϵα − ϵβ)

)−1 − (ϵα − ϵγ)−1

ϵα − ϵβ
(B.7)

since P-space is degenerate, we should take the limit of ϵβ → ϵα and obtain

=
d

dω

(
VβγVγδ

ω − ϵγ

)

ω=α

× Vαβ (B.8)

In the general case, the folded diagram including of the Q̂-box is calculated as the derivative of Q̂-box
with respect to energy parameter.

Using the expression of Q̂-box,

Heff = Q̂ − Q̂
∫

Q̂ + Q̂
∫

Q̂
∫

Q̂ − · · · . (B.9)

Knowing the fact that the Q̂-box can be written as follows,

Q̂(ω)αβ = Vαβ +
∑

i

VαiViβ

ω − ϵi
+

∑

i j

VαiVi jV jβ

(ω − ϵi)(ω − ϵ j)
+ · · · (B.10)

it is straight forward to prove folded diagram can be calculated by the derivatives with respect to ω.
After all, we reach the expression of calculate the effective interaction Veff in iterative formula,

V (n)
eff = Q̂ +

∞∑

m=1

1
m!

dmQ̂
dEm

0
{V (n−1)

eff }m, (B.11)

B.3 Linked Cluster Theory in Extended Kuo-Krenciglowa method

With the knowledge of Secs. B.1 and B.2, we summarize the folded-diagram method in EKK method
here in this section. As a consequence, what we need to evaluate is only valence-linked irreducible
diagrams and its derivatives for folded diagrams, as we claimed in Chap. 3.

First, we briefly repeat the proof of the factorization theorem in EKK method. The naive appli-
cation of the factorization theorem to the diagrams appearing in the diagrams of EKK method fails,
because the total energy denominator of diagram consist of disconnected pieces is not equal to the
sum of the denominators of individual pieces, when we have the state within P-space. This problem
is cured by the rewritten of the Hamiltonian of EKK method as follows:

H = H0 + V

= H′0 + V ′

= H′0 − P(E − H0)P + V

= H′0 + V1 + V, (B.12)
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in the limit of

The argument of folded diagram 
is the same 
→ derivatives indicate the folded 
diagram contribution
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4.1.1 Degenerate sd-shell model space
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Figure 4.1: (Color online) E-dependence of the EKK results of neutron-neutron channel in the sd-
shell (degenerate model space). The figure shows the monopole part, of Veff (denoted by Vnn), see
Eq. (4.1), and the level energies of 18O with respect to 16O. In panel (a), the monopole panel,
dotted lines (which make the shaded area) show the results without the folded diagram contribu-
tions for −3 ≤ E ≤ 1.5 MeV. The full line, dashed line and dot-dash line show the Vnn for
E = −3, 0, 1.5 MeV, respectively. In the lower panels (b) and (c), energy levels are calculated
for E = −3, − 1.5, 0, 1.5 MeV (b) without and (c) with the folded diagram contribution. Triangles,
diamonds, squares and circles show the energy levels of the ground, the first excited, the second and
third excited states, respectively.

In Fig. 4.1, we show our numerical results for the two-body matrix elements and level energies
calculated in the degenerate sd-shell model space for the neutron-neutron channel (18O) and in Fig. 4.2
the proton-neutron channel (18F).

To see the E-independence of the numerical results for Veff , calculations are performed for several
values of E. As explained before, the optimal value of E may be estimated as E ∼ 2ϵsd = 0. Note also
that E = 0 is far from the lowest pole of Q̂(E), E = Emin

pole = 1 !ω = 14 MeV, and the calculation is free
from the divergence problem of the Q̂-box. We have thus varied E in the range of −3 ≤ E ≤ 1.5 MeV
in Fig. 4.1 and 4.2. Obviously, the EKK method with E = 0 coincides exactly with the KK method
because our P-space is degenerate now (compare Eqs. (3.21) and (3.22)).

In order to study the effect on the various matrix elements, we analyze the monopole term in the

36 Chapter 3. Extended Kuo-Krenciglowa method

Then we impose the decoupling condition for the transformed HamiltonianH ,

0 = QHP = QVP − ωPHP + QHQω − ωPVQω, (3.3)

which decouples the P-space Schrödinger equation to Q-space.
Now we rewrite Eq. (3.3) as

(E − QHQ)ω = QVP − ωPH̃P − ωPVQω, (3.4)

where
H̃ = H − E (3.5)

is a shifted Hamiltonian obtained by the introduction of the energy parameter E. Equation (3.4) plays
the same role in the EKK method as Eq. (2.42) does in the KK method. The difference is that we
introduce a parameter E and replace PVP by PH̃P. By solving Eq. (3.4) iteratively as in the KK
method, we obtain the following iterative scheme to calculate the effective Hamiltonian Heff instead
of Veff ,

H̃(n)
eff = H̃BH(E) +

∞∑

k=1

Q̂k(E){H̃(n−1)
eff }k, (3.6)

where
H̃eff = Heff − E, H̃BH(E) = HBH(E) − E, (3.7)

and H̃(n)
eff stands for H̃eff at the n-th step. The effective Hamiltonian Heff is obtained as Heff = H(∞)

eff , and
satisfies

H̃eff = H̃BH(E) +
∞∑

k=1

Q̂k(E){H̃eff}k. (3.8)

The effective interaction, Veff, is then calculated by Eq. (2.36) as Veff = Heff − PH0P. Here the
definition of Q̂-box is the same as KK method, that is,

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP, (3.9)

and the derivative of Q̂-box is

Q̂k(E) =
1
k!

dkQ̂(E)
dEk . (3.10)

Let us now compare the EKK and the KK methods. First, and most importantly, the above EKK
method does not require that the model space is degenerate. It can, therefore, be applied naturally to
a valence space composed of several shells. Second, Eq. (3.6) changes H̃eff , while Eq. (2.46) changes
only Veff at each step of the iterative process. Third, in order to perform the iterative step of Eq. (3.6),
we need to calculate Q̂k(E) at the arbitrarily specified energy E, instead of at ϵ0 for Eq. (2.46).

Equation (3.8) is interpreted as the Taylor series expansion of H̃eff around H̃BH(E), and changing E
corresponds to shifting the origin of the expansion, and therefore to a re-summation of the series. This
explains why the left hand side of Eq. (3.8) is independent of E, while each term on the right hand
side depends on E. This in turn means that we can tune the parameter E in Eq. (3.8) to accelerate the
convergence of the series on the right hand side, a feature which we will exploit in actual calculations.

reminder

Monopole part of the interaction 
between the orbit j and j’
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Figure 4.2: (Color online) E-dependence of the EKK results of proton-neutron channel in the sd-
shell (degenerate model space). (a) monopole part of the interaction, (b) level energies of 18F without
folded diagrams and (c) with folded diagrams. Else, we use the same notation as in Fig. 4.1.

neutron-neutron channel in Fig. 4.1 (a). The monopole part of Veff , is defined as

Veff
T
j, j′ =

∑
J(2J + 1)⟨ j j′|Veff | j j′⟩JT∑

J(2J + 1)
. (4.1)

Let us look at the dotted lines (which make a shaded band in the figure) that are calculated by dropping
the folded diagram contributions, i.e., by replacing Veff simply by Q̂(E). We can see clearly that Q̂(E)
depends strongly on E. Next, let us turn to the EKK results that include all the folded diagram contri-
butions in the right hand side of Eq. (3.15). They are shown by solid lines for E = −3, 0, 1.5 MeV,
whose difference can hardly be seen. The above observation suggests that the folded diagrams cancel
the E-dependence of Q̂(E) and yield an almost E-independent H̃eff (and Veff) in Eq. (3.15).

In the lower panels (b) and (c) of Fig. 4.1, we show several energy levels of 18O with respect to
16O obtained by shell-model calculations with our effective interaction Veff . Here the single particle
energies in the shell-model diagonalization are taken from the USD interaction [46, 13]; the single-
particle energies of the states (in the isospin formalism) ϵd5/2 , ϵs1/2 , and ϵd3/2 are −3.9478 MeV, −3.1635
MeV and 1.6466 MeV, respectively.

Panels (b) and (c) show the results without and with folded diagram contributions, respectively.
We note that in panel (b) the energy levels are decreasing functions of E, which is explained by the
E-dependence of Q̂(E). On the other hand, in panel (c), we see that the energy levels are almost
independent of the parameter E, as they should.

Energy levels with respect to 16O 

Single particle energies are taken from 
phenomenological interaction USD

• w/o Folded diagram contribution, the monopole and 
the energy levels are depend on E, but the 
dependence is disappear when the folded diagram 
contribution added 

• Agrees with the theoretical consideration that the 
results does not depend on E

Neutron-Neutron channel
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Figure 4.2: (Color online) E-dependence of the EKK results of proton-neutron channel in the sd-
shell (degenerate model space). (a) monopole part of the interaction, (b) level energies of 18F without
folded diagrams and (c) with folded diagrams. Else, we use the same notation as in Fig. 4.1.

neutron-neutron channel in Fig. 4.1 (a). The monopole part of Veff , is defined as

Veff
T
j, j′ =

∑
J(2J + 1)⟨ j j′|Veff | j j′⟩JT∑

J(2J + 1)
. (4.1)

Let us look at the dotted lines (which make a shaded band in the figure) that are calculated by dropping
the folded diagram contributions, i.e., by replacing Veff simply by Q̂(E). We can see clearly that Q̂(E)
depends strongly on E. Next, let us turn to the EKK results that include all the folded diagram contri-
butions in the right hand side of Eq. (3.15). They are shown by solid lines for E = −3, 0, 1.5 MeV,
whose difference can hardly be seen. The above observation suggests that the folded diagrams cancel
the E-dependence of Q̂(E) and yield an almost E-independent H̃eff (and Veff) in Eq. (3.15).

In the lower panels (b) and (c) of Fig. 4.1, we show several energy levels of 18O with respect to
16O obtained by shell-model calculations with our effective interaction Veff . Here the single particle
energies in the shell-model diagonalization are taken from the USD interaction [46, 13]; the single-
particle energies of the states (in the isospin formalism) ϵd5/2 , ϵs1/2 , and ϵd3/2 are −3.9478 MeV, −3.1635
MeV and 1.6466 MeV, respectively.

Panels (b) and (c) show the results without and with folded diagram contributions, respectively.
We note that in panel (b) the energy levels are decreasing functions of E, which is explained by the
E-dependence of Q̂(E). On the other hand, in panel (c), we see that the energy levels are almost
independent of the parameter E, as they should.

Proton-Neutron channel

Energy levels with respect to 16O 

Single particle energies are taken from 
phenomenological interaction USD

36 Chapter 3. Extended Kuo-Krenciglowa method

Then we impose the decoupling condition for the transformed HamiltonianH ,

0 = QHP = QVP − ωPHP + QHQω − ωPVQω, (3.3)

which decouples the P-space Schrödinger equation to Q-space.
Now we rewrite Eq. (3.3) as

(E − QHQ)ω = QVP − ωPH̃P − ωPVQω, (3.4)

where
H̃ = H − E (3.5)

is a shifted Hamiltonian obtained by the introduction of the energy parameter E. Equation (3.4) plays
the same role in the EKK method as Eq. (2.42) does in the KK method. The difference is that we
introduce a parameter E and replace PVP by PH̃P. By solving Eq. (3.4) iteratively as in the KK
method, we obtain the following iterative scheme to calculate the effective Hamiltonian Heff instead
of Veff ,

H̃(n)
eff = H̃BH(E) +

∞∑

k=1

Q̂k(E){H̃(n−1)
eff }k, (3.6)

where
H̃eff = Heff − E, H̃BH(E) = HBH(E) − E, (3.7)

and H̃(n)
eff stands for H̃eff at the n-th step. The effective Hamiltonian Heff is obtained as Heff = H(∞)

eff , and
satisfies

H̃eff = H̃BH(E) +
∞∑

k=1

Q̂k(E){H̃eff}k. (3.8)

The effective interaction, Veff, is then calculated by Eq. (2.36) as Veff = Heff − PH0P. Here the
definition of Q̂-box is the same as KK method, that is,

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP, (3.9)

and the derivative of Q̂-box is

Q̂k(E) =
1
k!

dkQ̂(E)
dEk . (3.10)

Let us now compare the EKK and the KK methods. First, and most importantly, the above EKK
method does not require that the model space is degenerate. It can, therefore, be applied naturally to
a valence space composed of several shells. Second, Eq. (3.6) changes H̃eff , while Eq. (2.46) changes
only Veff at each step of the iterative process. Third, in order to perform the iterative step of Eq. (3.6),
we need to calculate Q̂k(E) at the arbitrarily specified energy E, instead of at ϵ0 for Eq. (2.46).

Equation (3.8) is interpreted as the Taylor series expansion of H̃eff around H̃BH(E), and changing E
corresponds to shifting the origin of the expansion, and therefore to a re-summation of the series. This
explains why the left hand side of Eq. (3.8) is independent of E, while each term on the right hand
side depends on E. This in turn means that we can tune the parameter E in Eq. (3.8) to accelerate the
convergence of the series on the right hand side, a feature which we will exploit in actual calculations.

reminder

Monopole part of the interaction 
between the orbit j and j’
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Figure 4.2: (Color online) E-dependence of the EKK results of proton-neutron channel in the sd-
shell (degenerate model space). (a) monopole part of the interaction, (b) level energies of 18F without
folded diagrams and (c) with folded diagrams. Else, we use the same notation as in Fig. 4.1.

neutron-neutron channel in Fig. 4.1 (a). The monopole part of Veff , is defined as

Veff
T
j, j′ =

∑
J(2J + 1)⟨ j j′|Veff | j j′⟩JT∑

J(2J + 1)
. (4.1)

Let us look at the dotted lines (which make a shaded band in the figure) that are calculated by dropping
the folded diagram contributions, i.e., by replacing Veff simply by Q̂(E). We can see clearly that Q̂(E)
depends strongly on E. Next, let us turn to the EKK results that include all the folded diagram contri-
butions in the right hand side of Eq. (3.15). They are shown by solid lines for E = −3, 0, 1.5 MeV,
whose difference can hardly be seen. The above observation suggests that the folded diagrams cancel
the E-dependence of Q̂(E) and yield an almost E-independent H̃eff (and Veff) in Eq. (3.15).

In the lower panels (b) and (c) of Fig. 4.1, we show several energy levels of 18O with respect to
16O obtained by shell-model calculations with our effective interaction Veff . Here the single particle
energies in the shell-model diagonalization are taken from the USD interaction [46, 13]; the single-
particle energies of the states (in the isospin formalism) ϵd5/2 , ϵs1/2 , and ϵd3/2 are −3.9478 MeV, −3.1635
MeV and 1.6466 MeV, respectively.

Panels (b) and (c) show the results without and with folded diagram contributions, respectively.
We note that in panel (b) the energy levels are decreasing functions of E, which is explained by the
E-dependence of Q̂(E). On the other hand, in panel (c), we see that the energy levels are almost
independent of the parameter E, as they should.

• The same observation as NN channel 

• 1+ state is slightly more dependent on E than other 
states, but folded diagram contribution reduce the 
E-dependence by around 80 to 90 percent

16



3N interaction

Fujita-Miyazawa three-body force

Three-body force

Virtual excitation to the ∆(1232): lowest excited
state of the nucleons

exchange π meson two times

Renormalization of single particle

energies affected by the Pauli’s

exclusion principle in nuclear

medium

This effect is included automatically
if we consider exchange diagram
(Delta-hole diagram)

→ effective two-body force

→ we call this effective twobody force comes from ∆ hole diagram
FM-twobody force
we calculate the multipole of FM-twobody force in T = 1 channel

Introduction Effective interaction Tensor force Three body force Summary 26/ 32

• Adding up effective 2N interaction derived from 3N 
interaction to EKK 2N effective interaction 

• This is one of the lowest order interaction from 3N 
force and for higher order we are working on…

Fujita-Miyazawa type 
3N interaction

Effective 
2N interaction

summation with hole state

[1] T. Otsuka, T. Suzuki, J. D. Holt, A. Schwenk, and Y. Akaishi, Phys. Rev. Lett. 105, 032501 (2010).
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Ground state energies
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Application to Calcium isotopes
setups 
 model space: full pfsdg-shell 
      (2hw excitation) 
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51Ti 9/2- and Woods-Saxon potential (still investigating)
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Figure 2. First 2+ excitation energies in the even calcium isotopes compared with experiment. (a)
Energies obtained from phenomenological models KB3G [3] and GXPF1 [4]. (b) NN-only theory:
energies based on a G-matrix and low-momentum interactions Vlowk with empirical GXPF1 SPEs
in 41Ca, as well as with KB3G values (SPE_KB3G). (c) Including contributions from 3N forces
due to ! excitations, 3N(!) and chiral EFT 3N interactions at N2LO, 3N(N2LO) [20] (see also
footnote 8). (d) Energies from Vlowk and 3N(N2LO) forces in the pfg9/2 shell with empirical GXPF1
SPEs and g9/2 at −1 MeV in 41Ca, as well as with SPEs in 41Ca calculated consistently in MBPT.

we also consider the one-! excitation 3N force that corresponds to particular values for the
two-pion-exchange part ci and cD = cE = 0 [Vlowk+3N(!)] [8]. In the Vlowk+3N calculations,
we also scale all matrix elements by !ω ∼ A−1/3.

For all results, full 3N multipole contributions are included to first order [21](footnote 9),
although only the monopole part is responsible for the SPE evolution in figure 1(c). Here
we see that in both microscopic approaches, 3N forces provide repulsive shifts of all single-
particle levels, changing the binding energies as shown in figure 4. In addition, the repulsion
between the f7/2 and p3/2 orbitals leads to an increased separation at N = 28, similar to the
phenomenological forces. Moreover, the gap at N = 32 is increased due to the repulsive
p3/2–p1/2 interaction, while N = 34 remains approximately the same.

We take into account many-body correlations by diagonalization in the valence space and
plot the first 2+ energy of the even calcium isotopes in figure 2. The excitation energies of
the phenomenological models in figure 2(a) show the fit to the high 2+ energy in 48Ca and
hence the doubly magic nature, and highlight the difference in the prediction of N = 34 as
a shell closure. In contrast, 48Ca is not reproduced in any calculation based on NN forces in
figure 2(b), regardless of starting SPEs, or whether we include the g9/2 orbit in figure 2(d).

9 The first-order 3N contribution also dominates the neutron matter energy.

4

different observation? 
maybe S.P.E and center of mass is different

40 42 44 46 48 50 52 54 56 58 60

Mass number

0.0

1.0

2.0

3.0

4.0

5.0

E
n
er

g
y
 (

M
eV

)

EXP. (2+)

CALC.
CALC. (pf only)

CALC. (w/o 3n pf only)

CALC. (w/o 3n)

E
2+

 of Ca isotopes



Lawson beta dependence
48Ca

contribution beyond pf-
shell almost vanish when 

beta>2.5 
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Figure 3. Magnetic dipole transition rates from the ground state to 1+ excited states in 48Ca
compared with experiment [24]. The B(M1) values are calculated in the pf and pfg9/2 shells in
panels (a) and (b), respectively, based on NN-only interactions and including 3N forces (spin g
factors are quenched by 0.75). The results are labeled as in figure 2.

With 3N forces in figure 2(c), the 2+ energy in 48Ca is uniformly improved. The pf
shell predictions with NN+3N forces are similar with initial GXPF1 SPEs, but still below
the experimental value. With KB3G SPEs in 41Ca, the 2+ energy is significantly lower due
to the smaller initial f7/2 − p3/2 spacing. When the g9/2 orbit is included in figure 2(d), the
2+ energy is obtained very close to experiment. In addition, we find that all microscopic
NN-only and NN+3N results at this level yield a high 2+ energy in 54Ca, and hence a shell
closure at N=34 (as suggested in [22]). The similarities of Vlowk+3N(!) and +3N(N2LO) in
figure 2(c) demonstrate that the configurations composed of valence neutrons probe mainly
the long-range parts of 3N forces.

To remove the uncertainty in the initial SPEs, we calculate the SPEs in 41Ca by solving the
Dyson equation, consistently including one-body contributions to third order in MBPT in the
same space as the two-body interactions, and chiral 3N forces between one valence neutron
and two core nucleons to first order. In contrast to the failure with NN-only forces, we find
in figure 1(d) that the pf shell SPEs are generally similar to the empirical ones, and we find
the g9/2 to initially lie between the p1/2 and f5/2 orbitals. Our results based on MBPT SPEs
and consistent two-valence-neutron interactions are shown in figure 2(d). The agreement with
experiment is very promising for a parameter-free calculation based on NN and 3N forces.
Furthermore, the high 2+ in 48Ca, despite a relatively small f7/2 −p3/2 gap, reflects the possible
importance of correlations beyond the pf shell (in the context of SPEs, see also [23]). Another
challenge for microscopic theories is the prediction of the first excited (1/2−) state in 49Ca,
which indicates the size of the p3/2 − p1/2 gap at N = 28. For Vlowk+3N(N2LO) in both the
pf and pfg9/2 shells, this energy is ≈ 1.0 MeV compared to the experimental value 2.02 MeV,
while the MBPT results yield 1.8 MeV.

5

Energy

B(M1)

M1 transition of 48Ca

Figure from J. D. Holt, J. Menendez, J. Simonis, and A. Schwenk, Phys. Rev. C 90, 024312 (2014).
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FIG. 7. Excitation energies of bound excited states in 48Ca
compared with experiment [64] and phenomenological inter-
actions (labels as in Fig. 6).

ing g
9/2, in particular f

7/2 � g
9/2. On the other hand,

we find a 0+ as the first excited state, contrary to exper-
iment, in all calculations. Since this state is dominated
by the 2p� 2h configuration with respect to the ground
state of the form (f

7/2)
�2(p

3/2)
2, this may be related to

a too strong f
7/2 � p

3/2 pairing interaction. Other ex-
cited states are in good agreement with experiment, and
comparable to the results of GXPF1A and KB3G.

3. 49Ca

As in lighter isotopes, our calculations of 49Ca in Fig. 8
show that with either NN forces only, or in the pf shell,
the physics necessary to reproduce the spectrum is not
adequately captured; the excited states are too com-
pressed and with incorrect ordering. It is only in the
NN+3N calculations in the extended pfg

9/2 space that
we observe a reasonable description of the 49Ca spectrum.

The ground state in 49Ca is dominated by the single-
particle configuration of a p

3/2 particle on top of 48Ca.
Therefore, the first excited 1/2�

1

state, predicted in very
good agreement with experiment, reflects the e↵ective
p
3/2 � p

1/2 gap for this nucleus. Also the location of the
lowest 7/2�

1

state is in reasonable agreement with the ten-
tatively assigned experimental level (it lies some 500 keV
lower), and with predictions from the phenomenologi-
cal interactions. This state is dominated by a 2p � 1h
(f

7/2)
�1(p

3/2)
2 configuration on top of 48Ca, and there-

fore reflects the e↵ective f
7/2�p

3/2 gap plus correlations
discussed for the closure of 48Ca.

However, in our calculations we observe that the 5/2�
1

state is quite low compared to experiment and the phe-
nomenological interactions. This is indicative of a small
e↵ective p

3/2 � f
5/2 gap in this region. We also note

that the spin of the fourth excited state has not been ex-
perimentally identified, but that our calculations, as in
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FIG. 8. Excitation energies of bound excited states in 49Ca
compared with experiment [18, 64] and phenomenological in-
teractions (labels as in Fig. 6).
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FIG. 9. Excitation energies of bound excited states in 50Ca
compared with experiment [18, 64] and phenomenological in-
teractions (labels as in Fig. 6).

phenomenology, predict it as a 7/2� state.

4. 50Ca

In Fig. 9 we see that for 50Ca the location of the first
excited 2+

1

state is overpredicted in all MBPT calcula-
tions by ⇠ 500 keV. The 0+ ground state and the 2+

1

state are dominated by (p
3/2)

2 configurations. Therefore,
the increased 2+

1

energy is related to the low excited 0+

state found in 48Ca.
Although most of the experimental spin and parity as-

signments are tentative, in our calculations with NN+3N
forces in the pfg

9/2 space, the remaining states are com-
patible with experiment and comparable to the results
with the phenomenological interactions. In particular
the large 2MeV gap between the 2+

1

and 2+
2

states is

6
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FIG. 5. Evolution of SPEs as a function of mass number. Cal-
culations are based on NN+3N forces in the extended pfg9/2
space.

60Ca is expected [33]. Therefore, to explore reliably the
neutron-rich region towards the dripline, continuum de-
grees of freedom and larger valence spaces are necessary.

B. Spectra

We now calculate the spectra of neutron-rich calcium
isotopes, comparing our MBPT predictions to experi-
ment when available, as well as to shell model results
using the phenomenological interactions GXPF1A [22]
and KB3G [20]. We discuss in detail the spectra of the
neutron-rich isotopes 47�56Ca. For 47�50Ca we present
di↵erent calculations based on chiral interactions and
compare to experiment, emphasizing the importance of
extended valence spaces and 3N forces. To quantify these
e↵ects in excitation spectra, we show results with NN
forces only and NN+3N forces, in the pf -shell and in the
extended pfg

9/2 space. For 51�56Ca, where there is none
or limited experimental information on excited states, we
focus on the predictions of our best calculations (NN+3N
forces in the pfg

9/2 space). The spectra for the lighter
42�46Ca, which mostly probe the f

7/2 orbital, are given
in Appendix A.

To understand these results, we refer to the e↵ec-
tive single-particle energies (ESPEs), given in Fig. 5, for
NN+3N forces in the pfg

9/2 space, which describe the
evolution of the spherical mean field of the calculation.
While correlations are important in the final results and
are included via exact diagonalization, ESPEs provide
a guide to the position of di↵erent orbitals for a given
neutron number within our valence-space framework.

1. 47Ca

In Fig. 6 we show the calculated spectra for 47Ca in
the pf and pfg

9/2 spaces using NN-only and NN+3N
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FIG. 6. Excitation energies of bound excited states in
47Ca compared with experiment [64] and phenomenological
GXPF1A [22] and KB3G [20] interactions. The NN-only re-
sults are calculated in the pf and pfg9/2 spaces with empirical
SPEs. The NN+3N results are obtained in the same spaces.
In the pf -shell, empirical SPEs are used, while the pfg9/2
space results use the consistently calculated MBPT SPEs.

forces. In the pf -shell calculations, the spectra are too
compressed. The two lowest-lying states di↵er by only
200 keV, and there is otherwise very poor agreement with
experiment. Furthermore, the e↵ects of 3N forces in the
pf -shell are relatively small. Extending the calculation to
the pfg

9/2 space with NN forces only partially improves
the spectrum, but it remains too compressed. Our final
results with NN+3N forces in the extended space im-
prove the spectrum, leading to the best agreement with
experiment.
Nevertheless, we still observe deficiencies in our MBPT

spectrum. The major disagreement is in the lowest 3/2�

state, which is approximately 1MeV below experiment,
reflecting the small f

7/2�p
3/2 gap around 48Ca, as seen in

Fig. 5. This state is well reproduced by the phenomeno-
logical interactions. Similarly, the 1/2�

1

state is also low,
due to the small f

7/2 � p
1/2 gap in our calculations.

2. 48Ca

Figure 7 shows the calculated 48Ca spectra compared
with experiment. As with 47Ca we note that the pf space
generally gives too compressed spectra, and 3N forces
give only minor improvements. In the extended pfg

9/2

space, while NN forces also give a poor experimental de-
scription, significant improvement is obtained when 3N
forces are included.
The gap between the ground state and the 2+

1

state,
a measure of the shell closure at N = 28, is well repro-
duced, though somewhat overpredicted by 500 keV. As
we have a relatively small f

7/2�p
3/2 gap in the ESPEs in

Fig. 5, the high 2+
1

state is a result of correlations involv-

Figure from J. D. Holt, J. Menendez, J. Simonis, and A. Schwenk, Phys. Rev. C 90, 024312 (2014).
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FIG. 10. Excitation energies of bound excited states in 51Ca
compared with experiment [14, 17] and phenomenological in-
teractions (labels as in Fig. 6).

not reproduced in our other MBPT calculations. The
location of the lowest 1+

1

state di↵ers significantly in the
three calculations, which are otherwise consistent with
the data, with the MBPT prediction being 1MeV and
500 keV above the GXPF1A and KB3G predictions, re-
spectively. A reliable assignment of the spin of the third
excited state in 50Ca at 3.53MeV is needed to identify
this state and test the theoretical calculations.

5. 51Ca

In 51Ca there is no definite experimental information
on the spins of the excited states, only tentative assign-
ments based largely on inferences from phenomenological
interactions [14, 17]. Therefore, we show in Fig. 10 only
our NN+3N calculation in the extended pfg

9/2 space and
compare with the experimental excitation energies and
with the phenomenological results.

The 3/2� ground state is dominated by a p
3/2 hole con-

figuration below the N = 32 subshell closure. The first
excited 1/2� state is indicative of the e↵ective p

3/2�p
1/2

gap (and approximate strength of the N = 32 closure)
and is in very good agreement with the experimental
tentative spin assignment and the results of the phe-
nomenological interactions. The 5/2� state with dom-
inant 1p � 1h (p

3/2)
�1(f

5/2)
1 configuration above the

ground state is in our calculation the 5/2�
1

state, while
in the phenomenological interactions it is the 5/2�

2

state,
lying 1MeV higher for KB3G and 2MeV higher for
GXPF1A. The reason for the di↵erence when using 3N
forces is related to the low 5/2� state in 49Ca, originat-
ing from the small e↵ective p

1/2�f
5/2 gap in our MBPT

approach. Note that this e↵ective gap is also significantly
di↵erent between the phenomenological interactions. In
turn, the 5/2�

2

state in the MBPT calculations has a
(p

3/2)
2

J=2

(p
1/2)

1 dominant structure (on top of 48Ca) and
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FIG. 11. Excitation energies of bound excited states in 52Ca
compared with experiment [14, 17] and phenomenological in-
teractions (labels as in Fig. 6).

is therefore related to the 2+
1

state in 50Ca. In all calcula-
tions it agrees with the tentatively assigned experimental
state at 2.4MeV. Ultimately, improved gamma-ray spec-
troscopy is needed.

6. 52Ca

For 52Ca, there are no spin assignments except for the
ground and first-excited state, where the large spacing
was first identified as a signature of the N = 32 subshell
closure [3]. The strong N = 32 shell closure has been
unambiguously established with mass measurements out
to 54Ca, leading to a steep decrease of the two-neutron
separation energy after 52Ca [10]. In Fig. 11 our NN+3N
calculations are compared to the phenomenological in-
teractions. All agree well with the limited experimental
data.
One striking di↵erence between models, however, is the

location of the 1+
1

state, which is found in our MBPT
calculations 1MeV and 2MeV above the KB3G and
GXPF1A calculations, respectively, and hence an accu-
rate experimental measurement would be highly valu-
able. The 3+

1

state is also predicted quite di↵erently de-
pending on the calculation; our MBPT value is in good
agreement with KB3G but more than 1MeV below that
of GXPF1A.

7. 53Ca

Only the ground-state spin of 53Ca and the position
of two excited states are known experimentally, one of
them only measured very recently at RIKEN [15]. Fig-
ure 12 shows our NN+3N calculations in the pfg

9/2 space
compared to the phenomenological interactions. In this
spectrum the ground state is dominated by a p

1/2 hole
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FIG. 12. Excitation energies of bound excited states in 53Ca
compared with experiment [15] and phenomenological inter-
actions (labels as in Fig. 6).

in the N = 34 closed subshell. Therefore, the di↵erence
between the ground and first 5/2�

1

and 3/2�
1

states will
be related to the e↵ective p

1/2 � f
5/2 and p

1/2 � p
3/2

gaps and hence the strengths of the N = 32 and N = 34
subshell closures, respectively. All three calculations pre-
dict a consistent location for the lowest 3/2�

1

state, also
in agreement with the unassigned experimental state at
2.2MeV, which, assuming this is the correct spin assign-
ment, reflects the predictions of the 2+

1

state in 52Ca.
Interestingly, the 5/2�

1

state appears at di↵erent ex-
citation energies in all calculations: 0.8MeV in MBPT,
1MeV with KB3G, and 3MeV with GXPF1A, in com-
parison with the state with unassigned spin at 1.75MeV.
This shows that phenomenological interactions, which
give similar results close to stability, can extrapolate to
very di↵erent results for neutron-rich systems. In this
case, the di↵erence is related to the small p

1/2 � f
5/2

gap (weak N = 34 subsell closure) predicted by KB3G,
and also preferred by our MBPT approach, in contrast
with the large gap (strong N = 34 subsell closure) given
by GXPF1A. Improved versions of GXPF1A that adjust
the p2

1/2 and p
1/2 � f

5/2 T = 1 monopole matrix ele-
ments according to the most recent experimental data,
GXPF1B and modifications, have recently become avail-
able [15, 23]. They reduce the p

1/2 � f
5/2 gap in agree-

ment with experiment, and predict the 5/2�
1

state at
1.9MeV. The two excited states are also in good agree-
ment with recent CC calculations with phenomenological
3N forces, which predict the 5/2�

1

and 3/2�
1

states at 1.9
and 2.5MeV, respectively [33].

8. 54Ca

54Ca is the last calcium isotope for which spectro-
scopic data exists. In Fig. 13, we show our NN+3N
calculations compared with the phenomenological inter-

 NN+3N
   pfg

9/2

 Expt.  GXPF1A  KB3G
0

1

2

3

4

5

6

E
n
er

g
y
 (

M
eV

) 3
+

2
+

4
+

0
+

2
+

0
+

0
+

2
+

3
+

0
+4
+

0
+

0
+

3
+

3
+

2
+

2
+

1
+

0
+

2
+

2
+

4
+

4
+

2
+

3
+

3
+

2
+

4
+

(2
+
)

54
Ca

FIG. 13. Excitation energies of bound excited states in 54Ca
compared with experiment [15] and phenomenological inter-
actions (labels as in Fig. 6).
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FIG. 14. Excitation energies in 55Ca compared with phe-
nomenological interactions (labels as in Fig. 6).

actions and the recent breakthrough 2+
1

measurement
at 2.043(19)MeV [15]. Our MBPT calculations predict
several low-lying excited states, implying only a weak
N = 34 subshell closure, consistent with the spectrum
in 53Ca. In particular, the 2+

1

state is predicted at
1.7MeV [32], only 300 keV below experiment. The 2+

1

excitation energy is also in very good agreement with
1.9MeV predicted by CC calculations with phenomeno-
logical 3N forces [33].

The striking di↵erence between KB3G and GXPF1A
in this region is clearly manifested in 54Ca. The re-
cently measured 2+

1

energy lies 1MeV below GXPF1A
and 0.7MeV above the KB3G prediction. The di↵erence
between these calculations is consistent with the spectra
presented in the discussion of 53Ca. As in 53Ca, this is
improved when considering the modified GXPF1B inter-
action, which reproduces experiment [15].
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Summary and conclusion

• Introduced EKK method to derive the effective interaction for the 
shell model which is applicable to multi-shell system. 

• As the first application of EKK method, Ca isotopes and island 
inversion in sdpf-shell is discussed. 

• island of inversion is well described 

• Ca isotopes need some more investigation
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Factorization and folded diagram method (KK) 1/2

2.4. Many-body theory of effective interaction 29

This imaginary time development leads us to a d lowest eigenenergies Eλ with true eigenstates of
|Ψλ⟩ with non-zero overlap to P-space. In the actual calculation, however, for we only calculate the
effective interactions approximately, we might not necessarily obtain the lowest D eigenvalues.

Equation (2.65) can be expressed by the basis states in P-space |ψλ⟩ instead of |ρλ⟩, using the
expansion in Eq. (2.63) as follows,

D∑

α=1

C(λ)
α H

U(0,−∞)|ψλ⟩
⟨ρλ|U(0,−∞)|ρλ⟩

=
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β=1

C(λ)
β Eλ

U(0,−∞)|ψλ⟩
⟨ρλ|U(0,−∞)|ρλ⟩

. (2.67)

Therefore, HU(0,−∞) is nearly the effective interaction Heff defined in P-space. However, the
perturbative expansion of HU(0,−∞) leads a divergence immediately, because of the zero energy
denominator.

The main point of KK method is the removal of those divergence. We will see that we can factorize
the divergent part of Eq. (2.67), and cancel them out. We use the familiar factorization theorem and
the proof will be presented in Appendix B. The factorization theorem tells us that the diagram consist
of several disconnected pieces can be evaluated by the product of those diagrams. We factorize the
numerator and denominators in Eq. (2.67), focusing on the states consist of two-particle plus the inert
core.

Let us start from the numerator. The factor U(0,−∞)|ψα⟩ include all the contribution of time
development of two particles plus the core states. Then, we can factorize the contribution which has
no connection to any of the valence states as follows:

U(0,−∞)|ψα⟩ = UV(0,−∞)a†i a†j |c⟩ × U(0,−∞)|c⟩, (2.68)

where the subscript V indicates the fact that the diagram has at least one connected valence line.
The first factor indicate the contribution starting from two particles plus core and the second factor
is considered to be insertion of bubble diagrams and the contribution terminate at t = 0 as a states
with equal numbers of particle and hole states. We can express the consideration explicitly using
factorization theorem again,

U(0,−∞)|c⟩ = UQ(0,−∞)|c⟩ × ⟨c|U(0,−∞)|c⟩, (2.69)

where the subscript Q means the diagram terminate as the state of Q-space at t = 0.
The first term of Eq. (2.68) UV(0,−∞)|ψα⟩ experience the similar decomposition as Eq. (2.69). As

a final states of the time development by UV(0,−∞), the states results in the states within P-space and
the states within Q-space at the time t = 0, that is,

UV(0,−∞)|ψα⟩ = |χP⟩ + |χQ⟩. (2.70)

where |χP⟩ is the term which terminate at t = 0 as P-space state and |χQ⟩ terminate as Q-space state.
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For the further decomposition, we introduce two things. One is Q̂-box and the other is folded
diagrams. The Q̂-box is defined as

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP

= PVP + PVQ
1

E − QH0Q
QVP + PVQ

1
E − QH0Q

QVQ
1

E − QH0Q
QVP + · · · (2.71)

which is already appeared in the formal theory of KK method and LS method. The Q̂-box is the
summation of all the contribution of the “irreducible” diagrams. Here the term “irreducible” means
that the diagrams cannot be divided into two pieces by cutting the P-space state by a horizontal line.
Therefore, in the evaluation of Q̂-box, we do not face to the divergence caused by the zero energy-
denominator, if the P-space is degenerate and the unperturbed Q-space energy is different from that
of P-space.

Next, we move to the folded diagrams. Let us consider the diagram which includes two vertices
at t = t1 and t = t2, with t1 > t2. When the state before t = t2 and after t = t2 are the same, clearly we
face to the zero denominator. This divergence can be factorized as follows:

❝❝t1
t2

= ❝t1 × ❝t2 − ❝t1

❝t2
!
! . (2.72)

In the left hand side, 0 > t1 > t2, and in the right hand side, the first term does not have the restriction
of ordering and the second term is the corresponding subtraction of 0 > t2 > t1. Suppose the railed line
is in Q-space and the other is in P-space. Since P-space is degenerate, the left hand side is obviously
divergent. In the right hand side, the divergence is only appearing in the second factor in the first
term. In this sense, Eq. (2.72) shows the minimal example of factorization of the divergence. Our
purpose of implement the factorization theorem and folded diagram procedure is that we factorize the
divergence and cancel them so that we obtain the finite physical results.

Now we come back to the factorization of Eq. (2.70). Both the first and second term include the
divergence. The first term |χP⟩, which terminate at t = 0 as P-space state, is expressed as

|χP⟩ = + ✉ + ✉✉ + ✉✉✉ + · · · (2.73)

where filled circle represent the Q̂-box and the line is the two-body states within P-space. Since we
are considering of degenerate P-space, this leads a clear divergence. On the other hand, the second
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term |χQ⟩, which terminate as Q-space at t = 0, is written as follows,

|χQ⟩ = ✉ + ✉✉ + ✉✉✉ + · · ·

=
( ✉ − ✉ ∫ ✉ + ✉ ∫ ✉ ∫ ✉ − · · · ) (2.74)

×
(

+ ✉ + ✉✉ + ✉✉✉ + · · ·
)

where integral represent the folding procedure. The folded diagrams here is defined as the contribution
of the end of the former Q̂-box is placed after the beginning latter Q̂-box. Note that the second factor
is the exactly |χP⟩. Equivalently we can write down the above as follows,

UV(0,−∞)|ψα⟩ =
D∑

β=1

UVQ(0,−∞)|ψβ⟩⟨ψβ|UV(0,−∞)|ψα⟩. (2.75)

where UVQ represent the contributions of the first factor in Eq. (2.74). The point is that the divergence
is only appearing in the second factor in Eq. (2.75).

Combining Eqs. (2.68), (2.70), (2.74), (2.75) together,

U(0,−∞)|ψα⟩ = UQ(0,−∞)|c⟩⟨c|U(0,−∞)|c⟩ ×
d∑

β=1

UVQ(0,−∞)|ψβ⟩⟨ψβ|UV(0,−∞)|ψα⟩ (2.76)

Then, Eq. (2.67) reads,

d∑

γ=1

bλγHUQ(0,−∞)|c⟩UVQ(0,−∞)|ψγ⟩ =
d∑

δ=1

bλδEλUQ(0,−∞)|c⟩UVQ(0,−∞)|ψγ⟩ (2.77)

where b(λ)
γ is defined as

b(λ)
γ =

d∑

α=1

C(λ)
α

⟨ψγ|UV(0,−∞)|ψα⟩⟨c|U(0,−∞)|c⟩
⟨ρλ|U(0,−∞)|ρλ⟩

(2.78)

Note that there are divergence in the numerator and the denominator and they are canceled out. Then,
the coefficient b(λ)

γ is finite.
Now we define an operator UL as follows,

UL(0,−∞)|ψα⟩ ≡ UVQ(0,−∞)|ψα⟩UQ(0,−∞)|c⟩, (2.79)

meaning that the contribution is linked diagrams.
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denominator.

The main point of KK method is the removal of those divergence. We will see that we can factorize
the divergent part of Eq. (2.67), and cancel them out. We use the familiar factorization theorem and
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V: Valence linked 
Q: terminate as Q-space state 
C: core state

P: terminate as P-space state 
Q: terminate as Q-space state
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For the further decomposition, we introduce two things. One is Q̂-box and the other is folded
diagrams. The Q̂-box is defined as

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP

= PVP + PVQ
1

E − QH0Q
QVP + PVQ

1
E − QH0Q

QVQ
1

E − QH0Q
QVP + · · · (2.71)

which is already appeared in the formal theory of KK method and LS method. The Q̂-box is the
summation of all the contribution of the “irreducible” diagrams. Here the term “irreducible” means
that the diagrams cannot be divided into two pieces by cutting the P-space state by a horizontal line.
Therefore, in the evaluation of Q̂-box, we do not face to the divergence caused by the zero energy-
denominator, if the P-space is degenerate and the unperturbed Q-space energy is different from that
of P-space.

Next, we move to the folded diagrams. Let us consider the diagram which includes two vertices
at t = t1 and t = t2, with t1 > t2. When the state before t = t2 and after t = t2 are the same, clearly we
face to the zero denominator. This divergence can be factorized as follows:

❝❝t1
t2

= ❝t1 × ❝t2 − ❝t1

❝t2
!
! . (2.72)

In the left hand side, 0 > t1 > t2, and in the right hand side, the first term does not have the restriction
of ordering and the second term is the corresponding subtraction of 0 > t2 > t1. Suppose the railed line
is in Q-space and the other is in P-space. Since P-space is degenerate, the left hand side is obviously
divergent. In the right hand side, the divergence is only appearing in the second factor in the first
term. In this sense, Eq. (2.72) shows the minimal example of factorization of the divergence. Our
purpose of implement the factorization theorem and folded diagram procedure is that we factorize the
divergence and cancel them so that we obtain the finite physical results.

Now we come back to the factorization of Eq. (2.70). Both the first and second term include the
divergence. The first term |χP⟩, which terminate at t = 0 as P-space state, is expressed as

|χP⟩ = + ✉ + ✉✉ + ✉✉✉ + · · · (2.73)

where filled circle represent the Q̂-box and the line is the two-body states within P-space. Since we
are considering of degenerate P-space, this leads a clear divergence. On the other hand, the second
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term |χQ⟩, which terminate as Q-space at t = 0, is written as follows,

|χQ⟩ = ✉ + ✉✉ + ✉✉✉ + · · ·

=
( ✉ − ✉ ∫ ✉ + ✉ ∫ ✉ ∫ ✉ − · · · ) (2.74)

×
(

+ ✉ + ✉✉ + ✉✉✉ + · · ·
)

where integral represent the folding procedure. The folded diagrams here is defined as the contribution
of the end of the former Q̂-box is placed after the beginning latter Q̂-box. Note that the second factor
is the exactly |χP⟩. Equivalently we can write down the above as follows,

UV(0,−∞)|ψα⟩ =
D∑

β=1

UVQ(0,−∞)|ψβ⟩⟨ψβ|UV(0,−∞)|ψα⟩. (2.75)

where UVQ represent the contributions of the first factor in Eq. (2.74). The point is that the divergence
is only appearing in the second factor in Eq. (2.75).

Combining Eqs. (2.68), (2.70), (2.74), (2.75) together,

U(0,−∞)|ψα⟩ = UQ(0,−∞)|c⟩⟨c|U(0,−∞)|c⟩ ×
d∑

β=1

UVQ(0,−∞)|ψβ⟩⟨ψβ|UV(0,−∞)|ψα⟩ (2.76)

Then, Eq. (2.67) reads,

d∑

γ=1

bλγHUQ(0,−∞)|c⟩UVQ(0,−∞)|ψγ⟩ =
d∑

δ=1

bλδEλUQ(0,−∞)|c⟩UVQ(0,−∞)|ψγ⟩ (2.77)

where b(λ)
γ is defined as

b(λ)
γ =

d∑

α=1

C(λ)
α

⟨ψγ|UV(0,−∞)|ψα⟩⟨c|U(0,−∞)|c⟩
⟨ρλ|U(0,−∞)|ρλ⟩

(2.78)

Note that there are divergence in the numerator and the denominator and they are canceled out. Then,
the coefficient b(λ)

γ is finite.
Now we define an operator UL as follows,

UL(0,−∞)|ψα⟩ ≡ UVQ(0,−∞)|ψα⟩UQ(0,−∞)|c⟩, (2.79)

meaning that the contribution is linked diagrams.
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Combining everything together,
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Using the fact that

⟨ψβ|UVQ(0,−∞)|ψα⟩ = δαβ, (2.80)

multiplying ⟨ψσ| from the left,

d∑

γ=1

b(λ)
γ ⟨ψσ|HUL(0,−∞)|ψλ⟩ = Eλ|ψσ⟩. (2.81)

Then we obtain the following secular equation defined only within P-space,

PHeffP|Ψλ⟩ = EλP|Ψλ⟩ (2.82)

where Heff is determined by

Heff = ⟨ψσ|HUL(0,−∞)|ψλ⟩. (2.83)

From Eq. (2.82), we can extract the core degrees of freedom. If the final interaction does not finish
with valence particles, it will give the energy of the core. Therefore, defining H0(V) and H1(V) as
those related to valence particles, we can extract the energy of the core as follows,

PHeffP|Ψα⟩ = (Eα − EC)P|Ψα⟩ (2.84)

where

Heff = ⟨ψσ|(H0(V) + H1(V))UL(0,−∞)|ψλ⟩. (2.85)

The presence of H0(V) and H1(V) means the diagram must terminate with valence particle at the time
t = 0. Then, the next problem is how to calculate the ⟨ψβ|UVQ(0,−∞)|ψα⟩ in a practical way. This
factor corresponds to the first factor of Eq. (2.74) and is calculated by the evaluation of Q̂-box and its
folded diagram.

In summary, the effective interaction Veff can be calculated as follows,

Veff = Q̂(ϵ0) − Q̂′(ϵ0)
∫

Q̂(ϵ0) + Q̂′(ϵ0)
∫

Q̂(ϵ0)
∫

Q̂(ϵ0) · · · , (2.86)

where the integrals represent the folding procedures, and Q̂′ represents Q̂-box contributions which
have at least two nucleon-nucleon interaction vertices. Note that, in order to have a degenerate P-
space energy, ϵ0, the single-particle energies in Eq. (2.53) for valence single-particle states, ϵa, ϵb, . . .

are completely degenerate. Equation (2.86) is the basis of the perturbative expansion of Veff in the
folded diagram theory (see for example Ref. [11] for more details).

There are two points to be noted here. First, because we cannot evaluate the Q̂-box defined in
Eq. (2.45) exactly (which implies including all terms to infinite order), we use the perturbative expan-
sion in Eq. (2.71), which we can currently evaluate up to the third order in the nucleon-nucleon in-
teraction. Second, the valence-linked diagram theorem states that we need to retain only the valence-
linked part (See Fig. 2.3), i.e., unlinked parts can be proved to cancel among themselves [11, 23]. At

Effective interaction Veff include Q-box and its infinite order repetition
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For the further decomposition, we introduce two things. One is Q̂-box and the other is folded
diagrams. The Q̂-box is defined as

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP

= PVP + PVQ
1

E − QH0Q
QVP + PVQ

1
E − QH0Q

QVQ
1

E − QH0Q
QVP + · · · (2.71)

which is already appeared in the formal theory of KK method and LS method. The Q̂-box is the
summation of all the contribution of the “irreducible” diagrams. Here the term “irreducible” means
that the diagrams cannot be divided into two pieces by cutting the P-space state by a horizontal line.
Therefore, in the evaluation of Q̂-box, we do not face to the divergence caused by the zero energy-
denominator, if the P-space is degenerate and the unperturbed Q-space energy is different from that
of P-space.

Next, we move to the folded diagrams. Let us consider the diagram which includes two vertices
at t = t1 and t = t2, with t1 > t2. When the state before t = t2 and after t = t2 are the same, clearly we
face to the zero denominator. This divergence can be factorized as follows:

❝❝t1
t2

= ❝t1 × ❝t2 − ❝t1

❝t2
!
! . (2.72)

In the left hand side, 0 > t1 > t2, and in the right hand side, the first term does not have the restriction
of ordering and the second term is the corresponding subtraction of 0 > t2 > t1. Suppose the railed line
is in Q-space and the other is in P-space. Since P-space is degenerate, the left hand side is obviously
divergent. In the right hand side, the divergence is only appearing in the second factor in the first
term. In this sense, Eq. (2.72) shows the minimal example of factorization of the divergence. Our
purpose of implement the factorization theorem and folded diagram procedure is that we factorize the
divergence and cancel them so that we obtain the finite physical results.

Now we come back to the factorization of Eq. (2.70). Both the first and second term include the
divergence. The first term |χP⟩, which terminate at t = 0 as P-space state, is expressed as

|χP⟩ = + ✉ + ✉✉ + ✉✉✉ + · · · (2.73)

where filled circle represent the Q̂-box and the line is the two-body states within P-space. Since we
are considering of degenerate P-space, this leads a clear divergence. On the other hand, the second

Divergences are canceled out !

Energy of the core Effective interaction
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B.2. The evaluation of folded diagrams 93

As the assumption of induction, we assume that the value can be calculated by the product of two
pieces, that is,

S k,l = S k · S ′l (k ≤ n, l ≤ m). (B.4)

Now we consider the quantity S n,m+1, that is, the second piece has m + 1 vertices. Depending on
the position of the last m + 1-th vertex, the sum of the denominator factor can be written as follows:

S n,m+1 = S n,m
1

Dn + D′m+1
+ S n−1,m

1
Dn + D′m+1

1
Dn−1 + D′m+1

+ · · · . (B.5)

Let us label the time of the vertex as (t1, t2, · · · , tn) and (t′1, t
′
2, · · · , t′m, t′m+1). Then, the first term of

Eq. (B.5) is for tn ≤ tm+1 < 0, and the second term is for tn−1 ≤ tm+1 < tn, and so on. Using the
assumption of induction Eq. (B.4), S n,m+1 can be calculated as follows:

S n,m+1 = S n · S ′m
1

Dn + D′m+1
+ S n−1 · S m

1
Dn + D′m+1

1
Dn−1 + D′m+1

+ · · ·

= S n · S ′m
(

1
Dn + D′m+1

(
1 +

Dn

Dn−1 + D′m+1

(
1 +

Dn−1

Dn−2 + D′m+1

(
1 + · · ·

+
D2

D1 + D′m+1

(
1 +

D1

D′m+1

)
· · ·

)

= S n · S ′m ·
1

D′m+1

= S n · S ′m+1. (B.6)

This indicate that the Eq. (B.4) is also valid for the case of S n,m+1. The case of S n+1,m is the same.
Therefore, it is proved that Eq. (B.4) is valid for all the n and m.

B.2 The evaluation of folded diagrams

To show how the folded diagram is calculated, we show the minimal example of the folded diagram
in Fig. B.2. The railed line represent the state γ is in Q-space. The diagram Fig. B.2 is calculated as

t=0

t=t1

t=t2

δ

γ
β

α

Figure B.3: folded diagram differentiation
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(B.2) =
VαβVβγVγδ

(ϵα − ϵγ − (ϵα − ϵβ))(ϵα − ϵγ)

=VαβVβγVγδ

(
(ϵα − ϵγ) − (ϵα − ϵβ)

)−1 − (ϵα − ϵγ)−1

ϵα − ϵβ
(B.7)

since P-space is degenerate, we should take the limit of ϵβ → ϵα and obtain

=
d

dω

(
VβγVγδ

ω − ϵγ

)

ω=α

× Vαβ (B.8)

In the general case, the folded diagram including of the Q̂-box is calculated as the derivative of Q̂-box
with respect to energy parameter.

Using the expression of Q̂-box,

Heff = Q̂ − Q̂
∫

Q̂ + Q̂
∫

Q̂
∫

Q̂ − · · · . (B.9)

Knowing the fact that the Q̂-box can be written as follows,

Q̂(ω)αβ = Vαβ +
∑

i

VαiViβ

ω − ϵi
+

∑

i j

VαiVi jV jβ

(ω − ϵi)(ω − ϵ j)
+ · · · (B.10)

it is straight forward to prove folded diagram can be calculated by the derivatives with respect to ω.
After all, we reach the expression of calculate the effective interaction Veff in iterative formula,

V (n)
eff = Q̂ +

∞∑

m=1

1
m!

dmQ̂
dEm

0
{V (n−1)

eff }m, (B.11)

B.3 Linked Cluster Theory in Extended Kuo-Krenciglowa method

With the knowledge of Secs. B.1 and B.2, we summarize the folded-diagram method in EKK method
here in this section. As a consequence, what we need to evaluate is only valence-linked irreducible
diagrams and its derivatives for folded diagrams, as we claimed in Chap. 3.

First, we briefly repeat the proof of the factorization theorem in EKK method. The naive appli-
cation of the factorization theorem to the diagrams appearing in the diagrams of EKK method fails,
because the total energy denominator of diagram consist of disconnected pieces is not equal to the
sum of the denominators of individual pieces, when we have the state within P-space. This problem
is cured by the rewritten of the Hamiltonian of EKK method as follows:

H = H0 + V

= H′0 + V ′

= H′0 − P(E − H0)P + V

= H′0 + V1 + V, (B.12)
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in the limit of

Folded diagrams can be calculated by energy derivative if the model space is degenerate

Final expression of the Veff 
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condition, the following solution need the condition of degenerate unperturbed eigenvalues in P-
space. We first explain the KK method [27] for the degenerate model space. Then we explain the
LS method [28] for the degenerate model space. Both methods eliminate the energy-dependence of
HBH(E) of Eq. (2.27) by introducing the so-called Q̂-box and its energy derivatives, resulting in an
energy-independent effective interaction Heff .

2.3.1 Kuo-Krenciglowa (KK) method

In the KK method, we assume a degenerate model space,

PH0P = ϵ0P. (2.41)

Then Eq. (2.34) reads

(ϵ0 − QHQ)ω = QVP − ωPVP − ωPVQω. (2.42)

The KK method provide us a one possible way to solve this decoupling equation. Multiplying (ϵ0 −
QHQ) from the left,

ω =
1

ϵ0 − QHQ
(QVP − ω (PVP + PVQω))

=
1

ϵ0 − QHQ
(QVP − ωVeff) , (2.43)

using the expression of Veff in Eq. (2.36). Then we obtain the the following iterative form:

ω(n) =
1

ϵ0 − QHQ

(
QVP − ω(n)V (n−1)

eff

)
, (2.44)

where ω(n) and V (n)
eff = PVP + PVQω(n) stand for ω and Veff in the n-th step, respectively.

Now we introduce the important operator called Q̂-box as follows:

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP,

Q̂k(E) =
1
k!

dkQ̂(E)
dEk . (2.45)

The Q̂-box is clearly defined as an operator act in P-space. Intuitively this quantity stands for the
interacting matrix which the P-space wavefunction having energy E makes excited to Q-space, and
propagate in Q-space, and then makes it back to P-space again.

Then we immediately arrive at the following iterative formula for V (n)
eff :

V (n)
eff = Q̂(ϵ0) +

∞∑

k=1

Q̂k(ϵ0){V (n−1)
eff }k. (2.46)

In the limit of n → ∞, Eq. (2.46) gives Veff = V (∞)
eff , if the iteration converges. The first term of

Eq. (2.46) is Q̂-box itself, which means the effective interaction include the effect of virtual excitation



Factorization theorem in EKK method

37

3.2. Extended Kuo-Krenciglowa method in many-body system 43

Figure 3.4: Insertion of V1 in EKK method. The wavy line and the cross indicate the insertion of
V1 interaction up to infinite order in perturbation. The pairs of lines indicate the two-body states in
P-space and the gray circles and parabolas are the states in Q-space.

3.2.3 Poles of Q̂-box

In this subsection, we analyze the position of the pole of the Q̂-box. It will be proved later that the
pole of the Q̂-box is not located no lower than certain point.

Figure 3.5: The harmonic oscillator potential. The dashed red square indicate the model space.

Figure 3.5 shows the schematic figure of unperturbed orbitals, which is often taken as harmonic
oscillator eigenstates, and valence particle states. The red dashed square represent the position of
P-space and the orbits below the box are the hole states and above the box are particle states out side
the model space. The position of the pole of Q̂-box is easily extracted from Eq. (3.20),

Epole =
∑

int

(ϵa + ϵp − ϵh). (3.31)

Let us put the largest single particle energy of the hole state as ϵmax
h and the smallest single particle

energy of the particle state as ϵmin
p . Now we are concerning is two-body states. Therefore, in any of

intermediate states, the number of particle Np and the number of hole Nh fulfill the following relation,

Np − Nh = 2, Nh ≥ 0 (3.32)

42 Chapter 3. Extended Kuo-Krenciglowa method

the left piece is a†aa†b|c⟩ ∈ P. However, for the total state is a†aa†ba†p3a†p4ah1ah2|c⟩ ∈ Q, the denominator
should be evaluated by the sum of single-particle energies present. The resultant denominator is no
longer the sum of individual denominators.

With this diagram rule the factorization theorem is no longer valid. We saw in Chap. 2, that
we need to factorize the divergence appearing in the perturbation theory (see Eqs. (2.68), (2.70),
(2.74), (2.75)). For naive factorization theorem does not hold in EKK method, we need a further
resummation to utilize the same equations in EKK method. We rewrite the Hamiltonian as follows:

H = H0 + V

= H′0 + V ′

= H′0 − P(E − H0)P + V

= H′0 + V1 + V, (3.26)

where V1 = −P(E − H0)P defined purely in P-space is to be regarded as perturbation as well. What
we want to prove now is, for example, that the factorization like

U(0,−∞)|ψα⟩ = UV(0,−∞)a†i a†j |c⟩ × U(0,−∞)|c⟩ (3.27)

still hold in EKK method. We consider the following resummation ; once we find the state in P-space,
we insert V1 interaction up to infinite order. Explicitly, for a P-space state |ψi⟩ = a†aa†b|c⟩ in interaction
picture of EKK Hamiltonian,

|ψi(t)⟩ = e−iEt|ψi⟩ (3.28)

is changed as follows,

PeiV1tP|ψi(t)⟩ = Pei(E−H0)tP|ψi(t)⟩
= e−iH0t|ψi⟩
= e−i(ϵa+ϵb)t|ψi⟩. (3.29)

With this transformation, the energy denominators are always the sum of individual pieces. Schemat-
ically, the factorization shown in Eq. (3.27) and the insertion of V1 are shown in Fig. 3.4. The other
necessary factorization is also true with the same discussion. Once we know the factorization holds
with the insertion of V1 up to infinite order, we know that the factorization can be performed and we
can remove the divergence in the same way as in KK method. Here we have to stress that in the actual
calculation, however, we do not need to insert V1 every time. After removing the divergence by use
of folded diagrams, we calculate Q̂-box with the Hamiltonian H = H′0 + V ′, with the diagram rules
we discussed.

Finally we obtain the following iterative formula,

H̃(n)
eff = H̃BH(E) +

∑
Q̂k(E){H̃(n−1)

eff }k. (3.30)

Factorization theorem does not hold in EKK method naively
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Figure 3.4: Insertion of V1 in EKK method. The wavy line and the cross indicate the insertion of
V1 interaction up to infinite order in perturbation. The pairs of lines indicate the two-body states in
P-space and the gray circles and parabolas are the states in Q-space.

3.2.3 Poles of Q̂-box

In this subsection, we analyze the position of the pole of the Q̂-box. It will be proved later that the
pole of the Q̂-box is not located no lower than certain point.

Figure 3.5: The harmonic oscillator potential. The dashed red square indicate the model space.

Figure 3.5 shows the schematic figure of unperturbed orbitals, which is often taken as harmonic
oscillator eigenstates, and valence particle states. The red dashed square represent the position of
P-space and the orbits below the box are the hole states and above the box are particle states out side
the model space. The position of the pole of Q̂-box is easily extracted from Eq. (3.20),

Epole =
∑

int

(ϵa + ϵp − ϵh). (3.31)

Let us put the largest single particle energy of the hole state as ϵmax
h and the smallest single particle

energy of the particle state as ϵmin
p . Now we are concerning is two-body states. Therefore, in any of

intermediate states, the number of particle Np and the number of hole Nh fulfill the following relation,

Np − Nh = 2, Nh ≥ 0 (3.32)
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Final expression

Insert V1 vertex up to infinite order
3.2. Extended Kuo-Krenciglowa method in many-body system 43

Figure 3.4: Insertion of V1 in EKK method. The wavy line and the cross indicate the insertion of
V1 interaction up to infinite order in perturbation. The pairs of lines indicate the two-body states in
P-space and the gray circles and parabolas are the states in Q-space.

3.2.3 Poles of Q̂-box

In this subsection, we analyze the position of the pole of the Q̂-box. It will be proved later that the
pole of the Q̂-box is not located no lower than certain point.

Figure 3.5: The harmonic oscillator potential. The dashed red square indicate the model space.

Figure 3.5 shows the schematic figure of unperturbed orbitals, which is often taken as harmonic
oscillator eigenstates, and valence particle states. The red dashed square represent the position of
P-space and the orbits below the box are the hole states and above the box are particle states out side
the model space. The position of the pole of Q̂-box is easily extracted from Eq. (3.20),

Epole =
∑

int

(ϵa + ϵp − ϵh). (3.31)

Let us put the largest single particle energy of the hole state as ϵmax
h and the smallest single particle

energy of the particle state as ϵmin
p . Now we are concerning is two-body states. Therefore, in any of

intermediate states, the number of particle Np and the number of hole Nh fulfill the following relation,

Np − Nh = 2, Nh ≥ 0 (3.32)

3.2. Extended Kuo-Krenciglowa method in many-body system 43

Figure 3.4: Insertion of V1 in EKK method. The wavy line and the cross indicate the insertion of
V1 interaction up to infinite order in perturbation. The pairs of lines indicate the two-body states in
P-space and the gray circles and parabolas are the states in Q-space.

3.2.3 Poles of Q̂-box

In this subsection, we analyze the position of the pole of the Q̂-box. It will be proved later that the
pole of the Q̂-box is not located no lower than certain point.

Figure 3.5: The harmonic oscillator potential. The dashed red square indicate the model space.

Figure 3.5 shows the schematic figure of unperturbed orbitals, which is often taken as harmonic
oscillator eigenstates, and valence particle states. The red dashed square represent the position of
P-space and the orbits below the box are the hole states and above the box are particle states out side
the model space. The position of the pole of Q̂-box is easily extracted from Eq. (3.20),

Epole =
∑

int

(ϵa + ϵp − ϵh). (3.31)

Let us put the largest single particle energy of the hole state as ϵmax
h and the smallest single particle

energy of the particle state as ϵmin
p . Now we are concerning is two-body states. Therefore, in any of

intermediate states, the number of particle Np and the number of hole Nh fulfill the following relation,

Np − Nh = 2, Nh ≥ 0 (3.32)

valence linked piece core part


