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Outline

In-Medium SRG with Magnus method

Valence space effective interactions

Scalar effective operators

H H ′ = UHU †
0p0h 1p1h 2p2h 3p3h

0p0h

1p1h

2p2h

3p3h

...

...

U⇒

0p0h 1p1h 2p2h 3p3h
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1p1h
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3p3h

...
...
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In-Medium SRG

H |Ψ〉 = E |Ψ〉

Perform unitary transformation to put H in a more convenient form:

Heff = UHU †

= eΩHe−Ω

= H + [Ω, H] +
1

2
[Ω, [Ω, H]] + . . .

Choice of Ω motivated by the desired form of Heff .

T. Morris et. al (in prep)
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In-Medium SRG

Hod ≡ 〈p|H |h〉+ 〈pp|H |hh〉
→ 0

H H ′ = UHU †
0p0h 1p1h 2p2h 3p3h

0p0h

1p1h

2p2h

3p3h

...

...

U⇒

0p0h 1p1h 2p2h 3p3h

0p0h

1p1h

2p2h

3p3h

...

...

E0 = 〈Φ0|H ′ |Φ0〉 = 〈Ψgs|H |Ψgs〉
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How to choose Ω̂?

A toy problem:

Ĥ =

(
ε1 hod
hod ε2

)
, Ω̂ =

(
0 θ
−θ 0

)
, eΩ̂ =

(
cos θ sin θ
− sin θ cos θ

)

eΩ̂Ĥe−Ω̂ =

(
ε1 cos2 θ + ε2 sin2 θ + h sin 2θ hod cos 2θ + ε2−ε1

2 sin 2θ
hod cos 2θ + ε2−ε1

2 sin 2θ ε2 cos2 θ + ε1 sin2 θ − h sin 2θ

)

h′od → 0 ⇒ θ = 1
2 tan−1

(
2hod
ε1−ε2

)
θ � 1 ⇒ θ ≈ hod

ε1−ε2

S. R. White, J. Chem Phys. 117, 7472 (2002)

Ragnar Stroberg (TRIUMF) Effective Operators w/ IMSRG May 22, 2015 5 / 23



How to choose Ω̂?

A toy problem:
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eΩ̂Ĥe−Ω̂ =

(
ε1 cos2 θ + ε2 sin2 θ + h sin 2θ hod cos 2θ + ε2−ε1

2 sin 2θ
hod cos 2θ + ε2−ε1

2 sin 2θ ε2 cos2 θ + ε1 sin2 θ − h sin 2θ

)

h′od → 0 ⇒ θ = 1
2 tan−1

(
2hod
ε1−ε2

)
θ � 1 ⇒ θ ≈ hod

ε1−ε2

S. R. White, J. Chem Phys. 117, 7472 (2002)

Ragnar Stroberg (TRIUMF) Effective Operators w/ IMSRG May 22, 2015 5 / 23



How to choose Ω̂?

A toy problem:
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How to choose Ω̂?

For a larger system, solution is iterative:

eΩ̂ = eΩ̂N eΩ̂N−1 . . . eΩ̂2eΩ̂1

Update Ω̂ after each iteration using Baker-Campbell-Hausdorff expansion:

eΩ̂ = eΩ̂2eΩ̂1

⇓

Ω̂ = Ω̂2 + Ω̂1 + 1
2

[
Ω̂2, Ω̂1

]
+ 1

12

([
Ω̂2,

[
Ω̂2, Ω̂1

]]
+
[
Ω̂1,

[
Ω̂1, Ω̂2

]])
+ . . .
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If you think you have a new idea...

U = eΩ̂

Ω̂ = 1
2 tan−1

(
hod

ε1−ε2

)

Ĥ ′ = Ĥ +
[
Ω̂, Ĥ

]
+ 1

2

[
Ω̂,
[
Ω̂, Ĥ

]]
+ . . .
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Schucan and W eidenmiiller11 pointed out 
that the perturbation expansion for effective 
interactions should diverge whenever there 

appears a so-called intruder state in the 
energy region of predominantly model-space 

states. In response to their observation, 
several approaches, including the use of 
Pade approximants2> ,B> and the AHK al­
gorithm,4> have been reported to provide 

a useful approximation scheme for the ef­

fective interactions. 
It is the purpose of this work to present 

another non-perturbative approach to the 

effective Hamiltonian Herr in the frame­
work of the canonical transformation me­
thod.51 Given a total Hamiltonian H, we 

consider a canonical transformation 

(1) 

Let P and Q be projectors of a model space 

B P and its complement BQ, respectively. 
If we have a unitary operator U such that 

PBQ=P(U- 1HU)Q=O' (2) 

then Herr can be given by PBP. A non­
perturbative solution U to Eq. (2) can be 

constructed in the following recurrence 
procedure: Let H<n-D be a Hamiltonian 

known beforehand. We define a unitary 

operator un by 

(3) 

with 

Gn = ~ gW CIP)(q]-lq)(p]), (4) 
p,q 

gW = (1/2) arctan {2HP<z-1l / (H~~-· 1 1 

(5) 

where ]p)€Bp, ]q)fBQ, H~~-ll, etc. are the 
matrix elements of H<n- 1> and o is a small 
parameter chosen such that Hg -ll- HJ:p- 11 

+o""O. With Un we introduce a trans­
formed Hamiltonian as 

Initial setting is n = 1 H 10 > =H. Equations 
(3) ~ (6) define a sequence {H<u, H(2), · ··}. 

If PH<n> Q converges to zero for some n, 

then Herr is given by PH'") P and the 

solution U to Eq. (2) 1s derived as 
U=U1u2 ... u,. 

The following properties of H 1" 1 , Un and 
gW may be useful in undentanding the 

above recurrence procedure: 
(a) If we consider only the principal 

value of arctan in Eq. (5), then :g~~l; <rr 

/4(<1) for any (p, q). 
(b) In the two-dimensional case that one 

of two basis vectors spans the model space, 

U1 associated with g11J in Eq. (5) with o = 0 
becomes the exact solution to Eq. (2). 

(c) If [Hqq-Hpp]')>[Hpq[, then g~~ is 

approximated as g~~~Hpq/(Hqq-Hpp) 

which agrees with the first-order term in 

the usual, perturbation expansion. 
(d) The transformation (6) eliminates a 

certain partial series in PH<n' Q. It is 
verified that the remaining term in PH<n> Q 
is given by a series in which each term 
has at least one factor of gW. From (a), 

it may be assumed that the norm of the 
matrix PH<n> Q will be reduced to asm al­
ler value than that of PH<n-uQ. This 

assumption is essential in the convergence 

that PH1n1 Q~O. 

(e) In the case that H£~-Jl -Hj;'p- 11 ~o, 

the sign of g~~) changes dependently on o. 
This fact suggests that PH<n> P will con­

verge to different Herr as o is varied. Such 
a dependence of H,rr on o causes no in-
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Benchmark: 4He and 16O

Comparison with importance-truncated no-core shell model

NN NN+3N ind. NN+3N full29.0

28.5

28.0

27.5

27.0

26.5

26.0

25.5

25.0

E
gs

4 He

NN NN+3N ind. NN+3N full170

160

150

140

130

120

110

E
gs

16 O

NCSM
NCSM NO
IMSRG

E&M N3LO NN + N2LO 3N (400,500 MeV cutoff)
~ω=20 MeV λSRG=1.88 fm−1

IT-NCSM results from Roth et. al PRL 109 052501 (2012)
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Decoupling a shell model valence space

Hod = 〈p|H |h〉+ 〈pp|H |hh〉+ 〈q|H |v〉+ 〈pq|H |vv〉+ 〈pp|H |hv〉

h

v

q

X

X } p HSM |ΨSM 〉 = E |ΨSM 〉
and

〈O〉 = 〈ΨSM | OSM |ΨSM 〉
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Example: 6Li

4He core, diagonalization in p-shell

4 5 6 7 8 9 10
eMax

33

32

31

30

29

28

27

26

25
E 

(M
eV

)
6 Li

NN+3N

1+

3+

0+

2+
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sd-shell single-particle energies

4 6 8 10 12
eMax

6

4

2

0

2

4

6

8

10

SP
E 

(M
eV

)

πd5/2

πd3/2

πs1/2

5/2+1/2+

3/2+
3/2+

17 F

protons

USDB

4 6 8 10 12
eMax

6

4

2

0

2

4

6

8

10

νd5/2

νd3/2

νs1/2

5/2+
1/2+

3/2+
3/2+

3/2+

17 O

neutrons
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Oxygen Isotopes

16 18 20 22 24 26 28
A

175

170

165

160

155

150

145

140

135

130

G
ro
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st
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e 
en
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gy

 (M
eV

)

Oxygen Isotopes

IM-SRG+SM
experiment

Bogner et al. PRL 113 142501 (2014)
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“Observables”

“Observables” from evolved operators

O′ = UOU †
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“Observables”: occupation number

neutron occupation
01234567

2.00

3.99

1.98

=24 MeVωh, -1=2.0 fmΛLO 3N

 = 6maxN

Hartree-Fock

1/2
0s

3/2
0p

1/2
0p

5/2
0d

3/2
0d

1/21s

7/2
0f

5/2
0f

3/2
1p

1/2
1p

9/2
0g

7/2
0g

5/2
1d

3/2
1d

1/2
2s

11/2
0h

proton occupation
0 1 2 3 4 5 6 7

2.00

3.99

1.98

O16
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“Observables”: occupation number

neutron occupation
01234567

1.96

3.85

1.87

=24 MeVωh, -1=2.0 fmΛLO 3N

 = 6maxN

1/2
0s

3/2
0p

1/2
0p

5/2
0d

3/2
0d

1/21s

7/2
0f

5/2
0f

3/2
1p

1/2
1p

9/2
0g

7/2
0g

5/2
1d

3/2
1d

1/2
2s

11/2
0h

proton occupation
0 1 2 3 4 5 6 7
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“Observables”: occupation number

neutron occupation
01234567

1.96

3.87

1.93

4.68

0.57

0.57

=24 MeVωh, -1=2.0 fmΛLO 3N

 = 6maxN

1/2
0s

3/2
0p

1/2
0p

5/2
0d

3/2
0d

1/21s

7/2
0f

5/2
0f

3/2
1p

1/2
1p

9/2
0g

7/2
0g

5/2
1d

3/2
1d

1/2
2s

11/2
0h

proton occupation
0 1 2 3 4 5 6 7

1.96

3.87

1.93

4.68

0.57

0.57

Si28

USDB:

0d3/2 0.63
0s1/2 0.71
0d5/2 4.66
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Charge radii
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Good convergence for closed shells.

Angeli and Marinova Nucl. Dat. Tab. 99, 69 (2013)
Petr Navrátil, Priv. comm

Hagen et al. PRL 108 242501 (2012)
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Mg Charge radii
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Radii for entire sd-shell are accessible.
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One-body piece of proton r2 operator
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Electric monopole transitions

1
τ = κ︸︷︷︸

electronic

|〈Ψf |ρ̂E0|Ψi〉|2︸ ︷︷ ︸
nuclear

ρ̂E0 ≈ 1
eR2

∑
i
eir

2
i

In a single major HO shell, |〈Ψf |ρ̂E0|Ψi〉|2 ∝ δfi

eΩ (ρ̂E0) e−Ω = ρE0 + [Ω, ρE0] + . . .

ρ +
Ω

ρ +

Ω

ρ
+ . . .
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Electric monopole transitions
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Convergence issues need to be understood.
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Summary

IM-SRG provides a formally straight-forward framework to calculate
properties of medium-mass nuclei
Effective valence-space interactions and operators open the door to
excited states and open-shell systems
The Magnus expansion method has several attractive features
Radii appear to be slower to converge than energies
We have the potential for obtaining E0 transition rates in the shell
model
Tensor operators coming soon

Collaborators:

A Calci, JD Holt, P Navratil

NSCL/MSU S Bogner, H Hergert, T Morris, N Parzuchowski

TU Darmstadt A Schwenk
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Induced forces and normal ordering (in-medium SRG)

H

k l

i j

Ĥ(2) ∼ hijkla†ia
†
jalak

Ω

k l

i j

Ω̂(2) ∼ ωijkla†ia
†
jalak

Ω

a H

l m n

i j k

[
Ω̂(2), Ĥ(2)

]
∼ ωialmhjkana†ia

†
ja
†
kanamal
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Induced forces and normal ordering (in-medium SRG)

Ĥfree =

1-body︷ ︸︸ ︷∑
ij

tija
†
iaj +

2-body︷ ︸︸ ︷
1

(2!)2

∑
ijkl

V
(2)
ijkla

†
ia
†
jakal +

3-body︷ ︸︸ ︷
1

(3!)2

∑
ijklmn

V
(3)
ijklmna

†
ia
†
ja
†
kanamal

ĤNO =

0-body︷︸︸︷
E0 +

1-body︷ ︸︸ ︷∑
ij

fij

{
a
†
iaj

}
+

2-body︷ ︸︸ ︷
1

(2!)2

∑
ijkl

Γijkl

{
a
†
ia

†
jakal

}
+

3-body︷ ︸︸ ︷
1

(3!)2

∑
ijklmn

Wijklmn

{
a
†
ia

†
ja

†
k
anamal

}

{
V(3)

E0 =
∑
i

∈|Φ0〉

tii + 1
2

∑
ij
∈|Φ0〉

V
(2)
ijij + 1

6

∑
ijk
∈|Φ0〉

V (3)
ijkijk

fij = tij +
∑
k

∈|Φ0〉

V
(2)
ikjk + 1

2

∑
kl
∈|Φ0〉

V (3)
ikljkl

Γijkl = Vijkl +
∑
m
∈|Φ0〉

V (3)
ijmklm

Wijklmn = V (3)
ijklmn
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Commutator relations for tensor operators

Normal ordered operators in a J-coupled basis

eΩOΛe−Ω = OΛ +
[
Ω,OΛ

]
+

1

2

[
Ω,
[
Ω,OΛ

]]
+ . . .

[X,Y ]0 =
∑
ab

(na − nb)ĵa
2

(XabYba) +
1

2

∑
abcdJ

nanbn̄cn̄dĴ
2XJ

abcdY
J
cdab

⇓
[
X,Y Λ

]
0

= [X,Y ]0 δΛ0
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Commutator relations for tensor operators (one body)

[X,Y ]ij = (1− Pij)
∑
a

XiaYaj

+
1

ĵi

∑
abJ

(na − nb) Ĵ2
(
XabY

J
biaj − YabX

J
biaj

)
+

1

2ĵi

∑
abcJ

(nanbn̄c + n̄an̄bnc) Ĵ2
(
XJ

ciabY
J
abcj − Y

J
ciabX

J
abcj

)

⇓[
X,Y Λ

]
ij

= (1− Pij)
∑
a

XiaY
Λ
aj

+
1

ĵi

∑
ab
JJ′

(na − nb) (−1)ja+jj+J Ĵ2Ĵ ′
{
J ′ J Λ
ji jj ja

}
XabY

ΛJJ′
biaj

−
1

ĵi

∑
abJ

(na − nb) (−1)jb+ji+J Ĵ2ĵa

{
ji jj J
jk jl Λ

}
Y Λ
abX

J
biaj

+
1

2ĵi

∑
abc
JJ′

(nanbn̄c + n̄an̄bnc) Ĵ2Ĵ ′
{
J ′ J Λ
ji jj jc

}(
XJ

ciabY
ΛJJ′
abcj − Y

ΛJJ′
ciab XJ′

abcj

)
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Commutator relations for tensor operators (two body)

[X,Y ]Jijkl = PijPkl

∑
a

(
XiaY

J
ajkl − YiaX

J
ajkl

)
+

1

2

∑
ab

(n̄a − nb)
(
XJ

ijabY
J
abkl − Y

J
ijabX

J
abkl

)
+ PijPkl

∑
abJ′

(na − nb) Ĵ ′
2
{
ji jj J
jk jl J ′

}
X̄J′

il̄ab̄
Ȳ J′

ab̄kj̄

⇓

[
X,Y Λ

]ΛJJ′

ijkl
= PijPkl

∑
a

(
XiaY

ΛJJ′
ajkl − ĵiĴ ′(−1)ji+jj+J

{
J ′ J Λ
ji ja jj

}
Y Λ
iaX

J′
ajkl

)
+

1

2

∑
ab

(n̄a − nb)
(
XJ

ijabY
ΛJJ′
abkl − Y

ΛJJ′
ijab XJ′

abkl

)

+ PijPkl

∑
abJ1J2

(na − nb) Ĵ ′Ĵ1
2
Ĵ2(−1)jj+jl+J′+J2

ji jl J1

jj jk J2

J J ′ Λ

 X̄J1

il̄ab̄
Ȳ ΛJ1J2

ab̄kj̄
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Commutator relations for tensor operators (two body)
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