Using β decays to constrain (n,γ)reaction cross sections in short lived nuclei

Artemis Spyrou

MICHIGAN STATE UNIVERSITY

National Science Foundation Michigan State University Workshop "Theory for open-shell nuclei near the limits of stability", MSU 2015

Overview

- R-process nucleosynthesis
- Uncertainties
 - οβ-decay rates
 οNeutron capture rates
- Experiment (short)
- Results
- Future plans

Nucleosynthesis paths

National Science Foundation Michigan State University

r-process path and abundances

S NSCL

National Science Foundation Michigan State University

Artemis Spyrou, May 2015, Slide 4

Sneden, C., Cowan, J. J., & Gallino, R., Ann. Rev. Ast. Ap. 46 (2008) 241.

Open questions: Origin of elements Sr-Y-Zr

- Abundance pattern robust above Ba
- Variations in the Sr-Y-Zr mass region
- Alternative processes proposed
 - LEPP
 - \circ weak r-process
 - vp-process

Cowan, et al, 2011

Open questions: What is the site of the r-process?

Credit: Erin O'Donnell, MSU

Core Collapse Supernova?

Neutron Star Merger?

National Science Foundation Michigan State University

r-process calculations

- Abundance pattern is different for the different astrophysical scenarios.
- Does one of them reproduce
- the observed abundances best?
- Why can't we tell?

National Science Foundation Michigan State University M. Mumpower, J. Cass, G. Passucci, R. Surman, A. Aprahamian, AIP Adv. 4, 041009 (2014)

Nuclear Physics Uncertainties: masses

Nuclear Physics Uncertainties: β - decay

Mumpower, Surman, Aprahamian (2015)

National Science Foundation Michigan State University

Nuclear Physics Uncertainties: βn

Nuclear Physics Uncertainties: (n,γ)

r-process

Why measure the β decay strength

- Model constraints for better input in r-process calculations (Cannot measure everything we need to rely on model predictions)
- Nuclear structure information
 - > $T_{1/2}$ sensitive to nuclear shape
 - > Can get same $T_{1/2}$ for different shapes
 - > Sensitivity to the nuclear shape

E. Nacher, et al., Phys. Rev. Lett. 92 (2004) 232501.

The pandemonium effect

John Milton's "Paradise Lost

Small size – low efficiency detector

National Science Foundation Michigan State University J.C. Hardy et al., Phys. Lett. B 71 (1977) 307.

The pandemonium effect: solution

Summing NaI - SuN

16x16 inch
45 mm borehole
2 pieces
8 segments
24 PMTs
Efficiency > 85% for 1 MeV

A. Simon, S.J. Quinn, A.S., et al., Nucl. Instr. Meth A 703, 16 (2013)

National Science Foundation Michigan State University

Experimental techniques

Weak r-process sensitivity

National Science Foundation Michigan State University

Current (n,γ) measurements

National Science Foundation Michigan State University

Neutron Capture – Uncertainties

<u>Hauser – Feshbach</u>

Nuclear Level Density

Constant T+Fermi gas, back-shifted Fermi gas, superfluid, microscopic

• γ-ray strength function

Generalized Lorentzian, Brink-Axel, various tables

Optical model potential

Phenomenological, Semi-microscopic

TALYS

Neutron Capture – β -Oslo

- \bullet Populate the compound nucleus via $\beta\text{-decay}$
- Spin selectivity correct for it
- \bullet Extract level density and $\gamma\text{-ray}$ strength function
- Advantage: Can reach (n,γ) reactions where beam intensity is 1 pps.

S NSCL

Artemis Spyrou, May 2015, Slide 22

Spyrou, Liddick, Larsen, Guttormsen, et al, PRL2014

z	73Se 7.15 H 8: 100.00%	74Se STABLE 0.89%	758e 119.79 D 8: 100.00%	765e STABLE 9.37%	77Se STABLE 7.63%	785e STABLE 23.77%	79Se 2.95E+5 Υ β-: 100.00%	805e STABLE 49.61% 2β-	81Se 18.45 M β-: 100.00%
33	72As 26.0 H 8: 100.00%	73As 80.30 D 8: 100.00%	74As 17.77 D ε: 66.00% β-: 34.00%	75As STABLE 100%	76As 1.0942 D β-: 100.00%	77As 38.83 H β-: 100.00%	78As 90.7 M β-: 100.00%	79Αs 9.01 M β-: 100.00%	80As 15.2 S β-: 100.00%
32	71Ge 11.43 D 8: 100.00%	720c STABLE 27.45%	73Ge STABLE 7.75%	74Ge STABLE 36.50%	75Ge 82.78 M β-: 100.00%	76Ge STABLE 1.73%	77Ge 11.30 H β-: 100.00% β ⁻	78Ge 88.0 M β-: 100.00%	79Ge 18.98 S β-: 100.00%
31	70Ga 21.14 M β-: 99.59% ε: 0.41%	71Ga STABLE 39.892%	72Ga 14.10 H β-: 100.00%	73Ga 4.86 H β-: 100.00%	74Ga 8.12 M β-: 100.00%	γ75Ga 126 S β-: 100.00%	76Ga 32.6 S β-: 100.00%	77Ga 13.2 S β-: 100.00%	78Ga 5.09 S β-: 100.00%
30	69Zn 56.4 Μ β-: 100.00%	70Zn ≥2.3E+17 Y 0.61ጭ 2β-	71Zn 2.45 M β-: 100.00%	72Zn 46.5 H β-: 100.00%	732n 23.5 S β-: 100.00%	742n 95.6 S β-: 100.00%	752n 10.2 S β-: 100.00%	76Zn 5.7 S β-: 100.00%	772n 2.08 S β-: 100.00%
	39	40	41	42	43	44	45	46	N

National Science Foundation Michigan State University Spyrou, Liddick, Larsen, Guttormsen, et al, PRL2014

Spyrou, Liddick, Larsen, Guttormsen, et al, PRL2014

National Science Foundation Michigan State University

National Science Foundation Michigan State University Spyrou, Liddick, Larsen, Guttormsen, et al, PRL2014

Normalizations

- Functional form of level density and strength function
- Three normalization points
 - Low-energy level density.
 - Level density at S_n.
 - Average radiative width at S_n .

- $\rho(S_n)$ from
 - Systematics
 - Microscopic calculations
- $<\Gamma_{\gamma}>$ normalized from systematics

National Science Foundation Michigan State University

Traditional Oslo method

- Reaction based
- Applicable closer to stability
- Populate the compound nucleus of interest through a transfer or inelastic scattering
- Extract level density and γ-ray strength function
- Calculate "semiexperimental" (n,γ) cross section
- Excellent agreement with measured (n,γ) reaction cross section

S NSCL

T.G. Tornyi, M. Guttormsen, et al., PRC2014

Results: ${}^{75}Ge(n,\gamma){}^{76}Ge$

Applicability

– Delayed neutron emission

National Science Foundation Michigan State University

Collaboration

Michigan State University

- S.N. Liddick
- K. Cooper
- A.C. Dombos
- D.J. Morrissey
- F. Naqvi
- S.J. Quinn
- A. Rodriguez
- C.S. Sumithrarachchi
- R.G.T. Zegers

University of Oslo

- A.C. Larsen
- M. Guttormsen
- T. Renstrøm

Central Michigan University

• G. Perdikakis

Notre Dame

• A. Simon

A. C. L. and M. G. acknowledge financial support from the Research Council of Norway, project grant no. 205528. This work was supported by the National Science Foundation under Grants No. PHY 102511, and No. PHY 0822648, and PHY 1350234.

NSCL SuN