Model Stability from Shell far

Frédéric Nowacki¹

International Collaborations in nuclear theory: Theory for open-shell nuclei near the limits of stability

MICHIGAN STATE

Landscape of medium mass nuclei

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Landscape of medium mass nuclei

for both SPHERICAL and DEFORMED systems

- Magic Numbers: ²⁴O, ⁴⁸Ni, ⁵⁴Ca, ⁷⁸Ni, ¹⁰⁰Sn
- Islands of Deformation: ¹²Be, ³²Mg, ⁴²Si, ⁶⁴Cr, ⁸⁰Zr ...

Variety of phenomena dictated by shell structure

 Close connection between collective behaviour and underlying shell structure

28

$$\mathcal{H} = \mathcal{H}_m + \mathcal{H}_M$$

Interplay between

20

8 ______ ¹⁴ c Monopole field (spherical mean field)
Multipole correlations (pairing, Q.Q, ...)

- 4 日 > 4 目 > 4 目 > 4 目 > - 目 - の Q ()

100 Sn

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$(p_{\frac{3}{2}}, p_{\frac{1}{2}})$	filling s	betwee	n ³⁴ Si and ³⁶ S	SF ,
				0.75
	KLS	N3LO (bare)	N3LO (4ħω)	0.50 -
Tot	0.58	0.58	0.60	0.25
Central	0.00	0.00	0.00	
Vector	0.58	0.58	0.60	
Tensor	0.00	0.00	0.00	6
				G.

 $\Delta (p_{\frac{3}{2}}-p_{\frac{1}{2}})$ filling $s_{\frac{1}{2}}$ between ³⁴Si and ³⁶S

	KLS	N3LO (bare)	N3LO $(4\hbar\omega)$
Tot	0.58	0.58	0.60
Central	0.00	0.00	0.00
Vector	0.58	0.58	0.60
Tensor	0.00	0.00	0.00
Tensor	0.00	0.00	0

・ロト (四) (三) (三) (三) (日)

- Let us consider the configurations with closed N=20 [sd]^{12,Z} (normal filling) and the ones with two neutrons blocked in the *pf* shell [sd]^{10,Z}[*pf*]^{2,0} (intruder)
- And calculate the energy of the ground states at fixed configuration, with and without correlations

F. Nowacki and A. Poves Phys. Rev. **C90**, 014302 (2014)

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ト ◆ 日 ト

F. Nowacki and A. Poves Phys. Rev. **C90**, 014302 (2014)

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ト ◆ 日 ト

F. Nowacki and A. Poves Phys. Rev. **C90**, 014302 (2014)

F. Nowacki and A. Poves Phys. Rev. **C90**, 014302 (2014)

F. Nowacki and A. Poves Phys. Rev. **C90**, 014302 (2014)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

F. Nowacki and A. Poves Phys. Rev. **C90**, 014302 (2014)

Merging of the islands of inversion at N=20 and N=28

Island of inversion at N=40, an old story (1996)

ER and RE AROUND N=40

A NEW REGION OF DEFORMATION.

A. Poves

ў(орh-2рh) = 5.70 9(орh-Урh) = 8.30

A SITUATION THAT REMINDS WHAT IS KNOWN AT N220 FFS.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Island of inversion at N=40, an old story: 2003

Eur. Phys. J. **16**, 55–61 (2003) DOI 10.1140/ep. /i2002-10069-9

The European Physical Journal A

GANIL

New region of deformation in the neutron-rich $^{60}_{24}Cr_{36}$ and $^{62}_{24}Cr_{38}$

O. Sorlin^{1,a}, C. Donzaud¹, F. Nowacki², J.C. Angélique³, F. Azaiez¹, C. Bourgeois¹, V. Chiste¹, Z. Dlouhy⁴, S. Gréys³, D. Guillemaud-Mueller¹, F. Ibrahim¹, K.-L Kratz⁵, M. Lewitowicz⁶, S.M. Lukyanov⁷, J. Mrasek⁴, Yu.-E. Penionzhkevich⁷, F. de Oliveira Santos⁶, B. Pfeiffer⁵, F. Pougheon¹, A. Poves⁸, M.G. Saint-Laurent⁶, and M. Stanoi⁶

More recent experimental information

RAPID COMMUNICATION

PHYSICAL REVIEW C 81, 051304(R) (2010)

Collectivity at N = 40 in neutron-rich ⁶⁴Cr

A. Gade,^{1,2} R. V. F. Janssens,³ T. Baugher,^{1,2} D. Bazin,¹ B. A. Brown,^{1,2} M. P. Carpenter,³ C. J. Chiara,^{3,4} A. N. Deacon,⁵
 S. J. Freeman,⁵ G. F. Grinyer,¹ C. R. Hoffman,³ B. P. Kay,³ F. G. Kondev,⁶ T. Lauritsen,³ S. McDaniel,^{1,2} K. Meierbachtol,^{1,7}
 A. Ratkiewicz,^{1,2} S. R. Stroberg,^{1,2} K. A. Walsh,^{1,2} D. Weisshaar,¹ R. Winkler,¹ and S. Zhu³
 ¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
 ²Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
 ³Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

RAPID COMMUNICATION

PHYSICAL REVIEW C 81, 061301(R) (2010)

Onset of collectivity in neutron-rich Fe isotopes: Toward a new island of inversion?

J. Ljungvall,^{1,2,3} A. Görgen,¹ A. Obertelli,¹ W. Korten,¹ E. Clément,² G. de France,² A. Bürger,⁴ J.-P. Delaroche,⁵ A. Dewald,⁶ A. Gadea,⁷ L. Gaudefroy,⁵ M. Girod,⁵ M. Hackstein,⁶ J. Libert,⁸ D. Mengoni,⁹ F. Nowacki,¹⁰ T. Pissulla,⁶ A. Poves,¹¹ F. Recchia,¹² M. Rejmund,² W. Rother,⁶ E. Sahin,¹² C. Schmitt,² A. Shrivastava,² K. Sieja,¹⁰ J. J. Valiente-Dobón,¹² K. O. Zell,⁶ and M. Zielińska¹³ ¹CEA Saclay, IRFU, Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France

²GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen, France

BOOMER CONCERNING FOILOS O

SM framework

Island of inversion around ⁶⁴Cr

- S. Lenzi, F. Nowacki, A. Poves and K. Sieja
- Phys. Rev. C 82, 054301, 2010.

LNPS interaction:

- based on realistic TBME
- new fit of the pf shell (KB3GR, E. Caurier)
- monopole corrections
- g_{9/2}-d_{5/2} gap set to 1.5 Mev in ⁶⁸Ni

Calculations:

- up to 14p-14h excitations across Z=28 and N=40 gaps
- up to 10¹⁰
- m-scheme code ANTOINE (non public version)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Shape transition at N=40

Shape transition at N=40

Shape transition at N=40

Neutron effective single particle energies

- reduction of the v f_{5/2}-g_{9/2} gap with removing f_{7/2} protons
- proximity of the quasi-SU3 partner d_{5/2}
- inversion of d_{5/2} and g_{9/2} orbitals same ordering as CC calculations

- reduction of the $\nu d_{3/2} f_{7/2}$ gap with removing $d_{5/2}$ protons
- proximity of the quasi-SU3 partner *p*_{3/2}
- inversion of $p_{3/2}$ and $f_{7/2}$ orbitals

Neutron effective single particle energies

 $d_{5/2}$

• inversion of $d_{5/2}$ and $g_{9/2}$ orbitals

same ordering as CC calculations

5 5 ³²Mg ⁶⁰Cə (a) (b) 0 0 -5 (אייעא) בכםב -5 PHYSICAL RE PRL 109. 032502 (2012) 10 TABLE II. Energies of the $5/2^+$ and $9/2^+$ resonances in 53,55,61 Ca. Re[E] is the energy relative to the one-neutron emission threshold, and the width is $\Gamma = -2Im[E]$ (in MeV). 15 d5/2s1/2 53Ca 55Ca 61Ca d3/2 20 Г N=20 Ιπ Re[E]Г Re[E] Г Re[E]f7/2 5/2+ 1.99 1.97 1.63 1.33 1.14 0.62 p3/2 9/2+ 4.75 0.28 4.43 0.23 2.19 0.02 25 14 16 8 Ζ G. Hagen et al. Phys. Rev. Lett. 109, 032502 (2012) reduction of the $\nu d_{3/2} - f_{7/2}$ gap with removing $f_{7/2}$ protons removing $d_{5/2}$ protons proximity of the guasi-SU3 partner

- proximity of the quasi-SU3 partner *p*_{3/2}
 - inversion of $p_{3/2}$ and $f_{7/2}$ orbitals

・ロット 小学 マイリット

nac

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Extension of collectivity N=40 towards N=50

Energy (MeV) R42=E(4+)/E(2+)

2	TABLE I: Quadrupole deformation properties of Cr and Fe isotopes. Energies are in MeV, $B(E2)$ in e^2 fm ⁴ , and Q in e fm ² . Experimental energies are the same as Fig. 3.						NPS-m erature is work	∘ • 4+			
1	$ E^*(2_1^+) \text{ exp.} \\ E^*(2_1^+) \text{ theo.} \\ Q_{spec} $	⁶² C 0.44 0.46 -38	^{64}Cr 0.42 0.43 -38	°Cr 0.39 0.42 -39	⁶⁸ Cr - 0.41 -38	66 Fe 0.57 0.54 -37	68 Fe 0.52 0.49 -40	⁷⁰ Fe 0.48 0.49 -39	⁷² Fe 0.52 0.51 -33	·-@	2+
0	$\begin{array}{l} \mathbf{B}(\mathbf{E2}) \downarrow \text{ th.} \\ \mathbf{Q}_{int} \text{ from } \mathbf{Q}_{spec} \\ \mathbf{Q}_{int} \text{ from } \mathbf{B}(\mathbf{E2}) \\ < \beta > \end{array}$	378 135 138 0.33	$388 \\ 136 \\ 140 \\ 0.33$	$389 \\ 137 \\ 140 \\ 0.32$	367 132 136 0.30	$372 \\ 131 \\ 137 \\ 0.29$	$400 \\ 140 \\ 142 \\ 0.30$	$382 \\ 135 \\ 139 \\ 0.28$	$279 \\ 116 \\ 118 \\ 0.24$	42 44 num	⁴⁶ ber
3	$ \begin{array}{l} \mathbf{E}^*(4_1^+) \exp. \\ \mathbf{E}^*(4_1^+) \mathrm{theo.} \\ \mathbf{Q}_{spec} \\ \mathbf{B}(\mathbf{E2}) \downarrow \mathrm{th.} \end{array} $	$1.17 \\ 1.18 \\ -49 \\ 562$	1.13 1.13 -49 534	$1.07 \\ 1.06 \\ -46 \\ 562$	- 1.15 -47 530	$1.41 \\ 1.34 \\ -47 \\ 553$	1.39 1.34 -51 608	$1.35 \\ 1.36 \\ -48 \\ 574$	1.33 1.36 -40 377	NPS-m erature is work	•
	$ \begin{array}{c} Q_{int} \text{ from } Q_{spec} \\ Q_{int} \text{ from } B(E2) \\ < \beta > \end{array} $	135 141 0.34	$134 \\ 140 \\ 0.33$	$134 \\ 141 \\ 0.32$	$130 \\ 137 \\ 0.31$	129 139 0.29	141 146 0.30	$132 \\ 142 \\ 0.29$	$ \begin{array}{c} 111 \\ 115 \\ 0.23 \end{array} $	0	•

Neutron number

Neutron number

42 44

46 48

Extension of collectivity N=40 towards N=50

Extension of collectivity N=40 towards N=50

Neutron number

Neutron number

Spin-orbit shell closure far from stability

- Evolution of Z=28 from N=40 to N=50
- Evolution of N=50 from Z=40 to Z=28

ヘロト 人間 ト 人注 ト 人注 ト 二 注

Three-body forces in medium mass nuclei

- Evolution of the neutron effective single-particle energies with neutron filling in ds, fp, and gd shells
- "Universal" mechanism for the generation of T=1 spin-orbit shell closures
- Connection with 3N forces and ab-initio calculations:
 - "works" for Coupled-Cluster and to be checked in nickels
 - problems for "ab-initio" core shell-model

Three body forces and persistence of spin-orbit shell gaps in medium-mass nuclei: Towards the doubly magic ⁷⁸Ni K. Sieja, F. Nowacki Phys. Rev. **C85**, 051301(R) (2012)

Physics around ⁷⁸Ni

PFSDG-U interaction:

- based on realistic TBME
- pf shell for protons and gds shell for neutrons
- monopole corrections
- H. 8. proton and neutrons gap ⁷⁸Ni fixed to phenomenological derived values

Calculations:

- excitations across Z=28 and N=50 gaps
- up to 10¹⁰ Slater Determinant basis states
- m-scheme code ANTOINE (non public version)

Physics around ⁷⁸Ni

PFSDG-U interaction:

- based on realistic TBME
- pf shell for protons and gds shell for neutrons
- monopole corrections
- H. 8. proton and neutrons gap ⁷⁸Ni fixed to phenomenological derived values

Calculations:

- excitations across Z=28 and N=50 gaps
- up to 10¹⁰ Slater Determinant basis states
- m-scheme code ANTOINE (non public version)

Schematic SU3 predictions: arXiv 1404.0224

Nilsson-SU3 selfconsistency: Quadrupole dominance in heavy N=Z nuclei

- monopole + quadrupole model
- proton gap (5MeV) and neutron gap (5 MeV) estimates
- Quasi-SU3 (protons) and Pseudo-SU3 (neutrons) blocks

$$Q_s = (\langle 2q_{20} \rangle + 3.)b^2)^2/3.5$$

$$\Xi = \epsilon_i \langle n_i \rangle - \hbar \omega \kappa (\frac{\langle 2q_{20(3)} \rangle}{15} + \frac{\langle 2q_{20(4)} \rangle}{23})$$

 Prediction of Island of strong collectivity below ⁷⁸Ni !!!

Shape coexistence in ⁷⁸Ni

- At first approximation, ⁷⁸Ni has a double closed shell structure for GS
- But very low-lying 4p4h structures
- The first excited state 2⁺ in ⁷⁸Ni predicted at 2.8 MeV and to be a deformed intruder !!!
- Necessity to go beyond (fpg g d5) LNPS space

Constrained deformed HF in the SM basis (B. Bounthong, Ph D Thesis, Strasbourg)

Schematic SU3 predictions: arXiv 1404.0224

Nilsson-SU3 selfconsistency: Quadrupole dominance in heavy N=Z nuclei

- monopole + quadrupole model
- proton gap (5MeV) and neutron gap (5 MeV) estimates
- Quasi-SU3 (protons) and Pseudo-SU3 (neutrons) estimates

$$Q_s = (\langle 2q_{20} \rangle + 3.)b^2)^2/3.5$$

$$\Xi = \epsilon_i \langle n_i
angle - \hbar \omega \kappa (rac{\langle 2q_{20(3)}
angle}{15} + rac{\langle 2q_{20(4)}
angle}{23})$$

 Prediction of Island of strong collectivity below ⁷⁸Ni !!!

Schematic SU3 predictions: arXiv 1404.0224

Nilsson-SU3 selfconsistency: Quadrupole dominance in heavy N=Z nuclei

Schematic SU3 predictions: arXiv 1404.0224

Spin-orbit shell closure far from stability

- Evolution of Z=28 from N=40 to N=50
- Evolution of N=50 from Z=40 to Z=28

ヘロト 人間 ト 人注 ト 人注 ト 二 注

Effective Single Particle Snarginschaimnds

Effective Single Particle Snarumschaimnds

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ト ◆ 日 ト

Effective Single Particle Snarumschaimnds

◆ロ > ◆母 > ◆臣 > ◆臣 > ◆日 > ◆日 >

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

・ロト<・<・<・<・<・・<li

- Monopole drift develops in all regions but the Interplay between correlations (pairing + quadrupole) and spherical mean-field (monopole field) determines the physics. It can vary from :
 - island of inversion at N=20 and N=40
 - deformation at Z=14, N=28 for 42 Si and shell weakening at Z=28, N=50 for 78 Ni
 - deformation extending from N=40 to N=50 for Z=24-26 for $^{74}\mbox{Cr}$ and $^{76}\mbox{Fe}$
- The "islands of inversion" appear due to the effect of the correlations, hence they could also be called "islands of enhanced collectivity". As quadrupole correlations are dominant in this region, most of thei inhabitants are deformed rotors. Shape transitions and coexistence show up everywhere
- Quadrupole energies can be huge and understood in terms of symmetries
- Spin-Tensor Analysis show competing trends but varying significantly from light to middle mass nuclei

Special Thanks to:

• B. Bounthong, E. Caurier, H. Naidja, K. Sieja, A. Zuker

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- A. Poves
- M. Hjorth-Jensen
- H. Grawe, S. Lenzi, O. Sorlin
- J. Herzfeld