Structure and decay of neutron unbound systems (a trip along the dripline)

MoNA Collaboration National Superconducting Cyclotron Laboratory Michigan State University, E. Lansing, MI

International Collaborations in Nuclear Theory: Theory for open-shell nuclei near the limits of stability May 19, 2015

10 Years of MoNA

Motivation

Explore nuclear structure at extreme neutron-to-proton ratios. (Evolution of Shell Model) Connecting 3-body decay correlations to nuclear structure

http://www.cenbg.in2p3.fr/desir/Beta-delayed-charged-particle

National Science Foundation Michigan State University

Motivation

Exciting agreement with experiments!

Calculations for continuum systems strongly desired to help guide us in experiments.

National Science Foundation Michigan State University

Outline theorists to calculate accurately Stuff we really want

Confusion in ⁹He and ¹⁰He tions in pink!

<u>~~1</u>A

Level str

- Evidence for 2n radioactivity (²⁶O)
- 3-body correlations (¹³Li, ¹⁶Be, ²⁶O)

Nitrogen Request [²³N*, ²⁴N(g.s.)]

Experiments @ NSCL

MoNA-LISA-Sweeper

Example: ²⁶O experiment

National Science Foundation Michigan State University

MoNA-LISA-Sweeper

Let's break it down to what you care about. What can we measure:

- Resonance energy of unbound states
- Extract the width, Γ , of the resonance (or a limit)
- From 2n decay, we can extract 3-body correlations
- We, generally, cannot provide insight into spin-parity

⁹He and ¹⁰He

National Science Foundation Michigan State University

National Science Foundation Michigan State University

Background Story

Source size effect

PHYSICAL REVIEW C 77, 034611 (2008)

Problems with the interpretation of the ¹⁰He ground state

L. V. Grigorenko^{1,2,3} and M. V. Zhukov⁴ ¹Flerov Laboratory of Nuclear Reactions, JINR, RU-141980 Dubna, Russia ²Gesellschaft für Schwerionenforschung mbH, Planckstrasse 1, D-64291, Darmstadt, Germany ³RRC "The Kurchatov Institute", Kurchatov sq. 1, RU-123182 Moscow, Russia ⁴Fundamental Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden (Received 28 September 2007; revised manuscript received 1 January 2008; published 27 March 2008)

National Science Foundation Michigan State University

χ^2 minimization

- ¹⁰He ground state resonance $E_r = 1.60(25) \text{ MeV}$ $\Gamma_r = 1.8(4) \text{ MeV}$
 - T = 4 MeV thermal bckgrd.

Systematic error estimated from varying background function(s).

Need to test the "consistency" of the ¹¹Li and transfer reactions.

Use a new reaction mechanism ¹⁴Be(-2p2n)

 $^{-10}$ He ground state measured at E = 1.60(25) MeV.

-Excellent agreement with GSI ¹¹Li(-p) appears to invalidate the "shift" theory.

- Discrepancy remains with the transfer reaction results.

Recent calculations indicate that the "shift" may also be expected from the ¹⁴Be "source size" in α alpha-knockout rxn.

Crucial to verify or disprove this theory.

Has implications for many studies of neutron unbound systems.

Comparison of theory and experiment from 2p decay "verifies" prediction....

FIG. 13. "No FSI" estimate for the ¹⁰He spectrum populated in α knockout from ¹⁴Be. The q = 100 MeV/c value is selected.

Sharov, Egorova, and Grigorenko. PRC 90, 24610 (2014)

PHYSICAL REVIEW C 86, 061602(R) (2012)

Sensitivity of three-body decays to the reactions mechanism and the initial structure by example of ⁶Be

L. V. Grigorenko, 1,2,3 I. A. Egorova, 4 R. J. Charity, 5 and M. V. Zhukov⁶

But there is more....

Sharov *et al.* did not take detector response into account

M.D. Jones, PRC 91, 044312 (2015)

Where is the ground state?Can the rxn mechanism effect the observed g.s.?

1) Could there be a second low-lying 0+ state? (Fortune PRC 2013)

2) First excited state a 1- intruder?

Uberseder, Rogachev, et al. ArXiV (2015)

Inverted ½+ ground state?

What is the groundstate and 1st excited state configurations?

What energies are they expected at?

PAC39 proposal to provide more experimental guidance

Uberseder, Rogachev, et al. ArXiV (2015)

12,13Li

Background

53 MeV/u ¹⁴Be beam. (Same beam as GSI-LAND)

National Science Foundation Michigan State University

1600

Energy (KeV)

¹³Li g.s. = 120(50) keV

 12 Li s-wave $a_s > -4$ fm

NSCL

Inconsistent with the GSI-LAND results:

Aksyutina *et al.*, PLB 666, 430 (2008). Aksyutina. PhD Thesis 2009

National Science Foundation Michigan State University

13Be puzzle

National Science Foundation Michigan State University

Background – Here we go again....

Low-lying 1/2+ ground state?

National Science Foundation Michigan State University

Background – Here we go again....

New MoNA data can be described with resonance parameters from Randisi et al.

G. Randisi et al., Phys. Rev. C 89 (2014) 034320

B. Marks *et al.*, in preparation

Background – Here we go again....

Does theory agree? ¹/₂+ ground state? What energy?

The ^{9,10}He, ^{12,13}Li, and ¹³Be demonstrate the intense need for guidance from theory.

Difficulty in experiments leads to difficulties in consistently interpreting:

- ground states configurations
- level ordering
- number of low-lying levels.

Evidence for 2n radioactivity

 $^{27}F(-p) \rightarrow ^{26}O \rightarrow ^{24}O + n + n$

Motivation

Understanding drastic change in neutron dripline between Z=8 and Z=9

Baumann et al. Rep. Prog. Phys. 75, 036301 (2012).

Results: Decay Energy

Test of theory

-60

 $\hbar\omega$ =24 MeV

National Science Foundation Michigan State University

Prediction

Radioactivity

Pfutzner et al. (2012): $T_{1/2} > 10^{-14}$ s (10 fs)

- K-shell vacancy half-life of carbon atom 2 x 10⁻¹⁴ s
- Width (Γ) is 0.03 eV, which is about room temp

Cerny & Hardy (1977): $T_{1/2} > 10^{-12}$ s (1ps)

IUPAC, discovery of element: $T_{1/2} > 10^{-14}$ s (10 fs) - Around the time for nucleus to acquire outer electrons

R³B-LAND results

C. Caesar & *R3B Collaboration*, Phys. Rev. C **88**, 034313 (2013) L.V. Grigorenko et al., Phys. Rev. C 84 (2011) 021303

Half-life measurement

increased lifetime = reduced velocity neutrons

$$V_{rel} = V_n - V_{frag}$$

Lifetime: $T_{1/2} = 4.5^{+1.1}_{-1.5} \text{ ps}$ (1 σ)

Unbinned maximum likelihood technique

New Lifetime calculations

"realistic theoretical limits"

 $E_T < 1 \text{ keV}$

Improve Edecay constraints

Predictions of the width, s/d configuration, energy of the ²⁶O ground state?

Future possible cases...

- Finite lifetimes for single neutron emitters are still unlikely
- Other two-neutron emitters could be possible in the 100 keV range
- How about four-neutron emitters?

L.V. Grigorenko et al., Phys. Rev. C 84 (2011) 021303

Correlations in the 3-body decay

$^{16}Be \rightarrow ^{14}Be + n + n$

 $^{13}Li \rightarrow ^{11}Li + n + n$

 26 O \rightarrow 24 O + n + n

Spyrou, *et al.*, PRL **108**, 102501 (2012). Kohley, *et al.*, PRC **87**, 011304(R) Kohley et al. PRC **91**, 034323 (2015).

Motivation

Push theory to describe and predict the correlations from 2n decays (Significant progress has been made in 2p decays)

Pfutzner, Karny, Grigorenko, Riisager, RMD. 84, 567 (2012).

National Science Foundation Michigan State University MC

 0^{-1}

Osta)

0.5 -0.5 -1.0 0.0 0.2

 0^{+} "Y"

Motivation: ¹⁶Be

¹⁶Be predicted to be:

- unbound with respect to 2n decay
- bound with respect to 1n decay

Scenario for "true" 2n emission

National Science Foundation Michigan State University

¹⁶Be Decay Energy

 16 Be g.s. resonance = 1.35(10) MeV

¹⁶Be Correlations

Strong nn correlation observed

National Science Foundation Michigan State University

What we learned from the correlations:

- Simple descriptions provide basic picture of the correlations.
- Strong nn correlations observed
- Need full 3-body calculations to describe the evolution of the system and connect the measured correlations with initial state or wavefunction of the system.

Hagino, Vitturi, Perez-Bernal, and Sagawa. JPG 38, 015105 (2011).

National Science Foundation Michigan State University

²⁶O Correlations

Experimentally measured correlation not sensitive to decay mode.

Kohlev et al. PRC 91. 034323 (2015).

260 – radius?

Grigorenko et al. PRL (2013)

Formally, the radius of the decaying system (negative separation energy) is infinite. Practically, for systems with radioactive lifetimes, the radial characteristics are reliably saturated for integration in the subbarrier region and we can investigate long-lived ²⁶O in terms of halo structure. In our calculations we have found values around 5.7 fm for the "valence" neutron rms radius in ²⁶O. Such values are typical for ¹¹Li which possesses the most extreme 2n halo known so far. The huge halo of ¹¹Li is

Ekstrom et al. PRC(R) (2015)

²⁶O Correlations

However, the correlations do provide a sensitivity to the decay energy of the ground-state.

<u>NEW LIMIT:</u> ²⁶O ground-state E_{decay} < 53 keV

Using correlations of Hagino E_{decay} < 15 keV

Kohley et al. PRC 91, 034323 (2015).

^{23,24}N request

What is known about unbound N states/nuclei?

MoNA student has data with unbound states in ²³N* (N=16)

MoNA experimental proposal to measure ground-state and excited states ^{24}N (N=17)

Future: Beyond the dripline in the pf-shell

B.A. Brown, Prog. Part. Nucl. Phys. 47 (2001) 517

Summary

Discussion topics

- Confusion in ⁹He and ¹⁰He
- Level structure of ^{12,13}Li
- ¹³Be puzzle
- Evidence for 2n radioactivity (²⁶O)
- 3-body correlations (¹³Li, ¹⁶Be, ²⁶O)
- Nitrogen Request [²³N*, ²⁴N(g.s.)]

Many open questions for these open shell nuclei.

Theoretical guidance would be appreciated and used.

Information such as

- g.s. to g.s. energies
- level spacing
- spin-parity assignments
- decay widths

Acknowledgments

National Science Foundation Michigan State University