Present status of perturbative calculation of effective shell-model hamiltonians

Nunzio Itaco

Università di Napoli Federico II Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

International Collaborations in Nuclear Theory: Theory for open-shell nuclei near the limits of stability May 11-29, 2015 Michigan State University and FRIB/NSCL

What is a realistic effective shell-model hamiltonian ?

An example: ¹⁹F

• 9 protons & 10 neutrons interacting

- spherically symmetric mean field (e.g. harmonic oscillator)
- 1 valence proton & 2 valence neutrons interacting in a truncated model space

The degrees of freedom of the core nucleons and the excitations of the valence ones above the model space are not considered explicitly.

An example: ¹⁹F

- 9 protons & 10 neutrons interacting
- spherically symmetric mean field (e.g. harmonic oscillator)
- 1 valence proton & 2 valence neutrons interacting in a truncated model space

The degrees of freedom of the core nucleons and the excitations of the valence ones above the model space are not considered explicitly.

An example: ¹⁹F

- 9 protons & 10 neutrons interacting
- spherically symmetric mean field (e.g. harmonic oscillator)
- 1 valence proton & 2 valence neutrons interacting in a truncated model space

The degrees of freedom of the core nucleons and the excitations of the valence ones above the model space are not considered explicitly.

Effective shell-model hamiltonian

The shell-model hamiltonian has to take into account in an effective way all the degrees of freedom not explicitly considered

Two alternative approaches

phenomenological

microscopic

$V_{NN}~(+V_{NNN})$ \Rightarrow many-body theory \Rightarrow $H_{ m eff}$

Definition

Two alternative approaches

- phenomenological
- microscopic

V_{NN} (+ V_{NNN}) \Rightarrow many-body theory \Rightarrow $H_{\rm eff}$

Definition

Two alternative approaches

- phenomenological
- microscopic

 $V_{NN}~(+V_{NNN}) \Rightarrow$ many-body theory \Rightarrow $H_{\rm eff}$

Definition

Two alternative approaches

- phenomenological
- microscopic

 $V_{NN}~(+V_{NNN})$ \Rightarrow many-body theory \Rightarrow $H_{\rm eff}$

Definition

Two alternative approaches

- phenomenological
- microscopic

 $V_{NN}~(+V_{NNN}) \Rightarrow$ many-body theory \Rightarrow $H_{
m eff}$

Definition

Workflow for a realistic shell-model calculation

- Choose a realistic NN potential (NNN)
- Oetermine the model space better tailored to study the system under investigation
- Oerive the effective shell-model hamiltonian by way of a many-body theory
- Calculate the physical observables (energies, e.m. transition probabilities, ...)

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

Strong short-range repulsion

How to handle the short-range repulsion ?

- Brueckner G matrix
- Iow-momentum NN potentials

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

Strong short-range repulsion

How to handle the short-range repulsion ?

- Brueckner G matrix
- low-momentum NN potentials

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

Strong short-range repulsion

How to handle the short-range repulsion ?

- Brueckner G matrix
- low-momentum NN potentials
 - V_{low-k} (Lee-Suzuki or SRG)
 - chiral potentials rooted in EF⁻

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

How to handle the short-range repulsion ?

- Brueckner G matrix
- low-momentum NN potentials
 - V_{low-k} (Lee-Suzuki or SRG)
 - chiral potentials rooted in EF

Strong short-range repulsion

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

How to handle the short-range repulsion ?

- Brueckner G matrix
- low-momentum NN potentials
 - V_{low-k} (Lee-Suzuki or SRG)
 - chiral potentials rooted in EF

Strong short-range repulsion

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

How to handle the short-range repulsion ?

- Brueckner G matrix
- Iow-momentum NN potentials
 - V_{low-k} (Lee-Suzuki or SRG)
 - chiral potentials rooted in EFT

Strong short-range repulsion

A-nucleon system Schrödinger equation

$$H|\Psi_
u
angle=E_
u|\Psi_
u
angle$$

with

$$H = H_0 + H_1 = \sum_{i=1}^{A} (T_i + U_i) + \sum_{i < j} (V_{ij}^{NN} - U_i)$$

Model space

$$|\Phi_i\rangle = [a_1^{\dagger}a_2^{\dagger} \dots a_n^{\dagger}]_i |c\rangle \Rightarrow P = \sum_{i=1}^d |\Phi_i\rangle\langle\Phi_i|$$

Model-space eigenvalue problem

$$H_{\mathrm{eff}}P|\Psi_{lpha}
angle=E_{lpha}P|\Psi_{lpha}
angle$$

$$\begin{pmatrix} PHP & PHQ \\ \hline \\ QHP & QHQ \end{pmatrix} \begin{array}{c} \mathcal{H} = X^{-1}HX \\ \Longrightarrow \\ Q\mathcal{H}P = 0 \end{array} \begin{pmatrix} P\mathcal{H}P & P\mathcal{H}Q \\ \hline \\ 0 & Q\mathcal{H}Q \end{pmatrix}$$

 $H_{\rm eff} = P \mathcal{H} P$

Suzuki & Lee
$$\Rightarrow X = e^{\omega}$$
 with $\omega = \left(\begin{array}{c|c} 0 & 0 \\ \hline Q \omega P & 0 \end{array} \right)$

$$\left(\begin{array}{c|c} PHP & PHQ \\ \hline \\ \hline \\ QHP & QHQ \end{array} \right) \begin{array}{c} \mathcal{H} = X^{-1}HX \\ \Longrightarrow \\ Q\mathcal{H}P = 0 \end{array} \left(\begin{array}{c} P\mathcal{H}P & P\mathcal{H}Q \\ \hline \\ 0 & Q\mathcal{H}Q \end{array} \right)$$

Suzuki & Lee
$$\Rightarrow X = e^{\omega}$$
 with $\omega = \left(\begin{array}{c|c} 0 & 0 \\ \hline Q \omega P & 0 \end{array} \right)$

$$\begin{pmatrix} PHP & PHQ \\ \hline QHP & QHQ \end{pmatrix} \begin{array}{c} \mathcal{H} = X^{-1}HX \\ \Longrightarrow \\ Q\mathcal{H}P = 0 \end{array} \begin{pmatrix} P\mathcal{H}P & P\mathcal{H}Q \\ \hline 0 & Q\mathcal{H}Q \end{pmatrix}$$

Suzuki & Lee
$$\Rightarrow X = e^{\omega}$$
 with $\omega = \left(\begin{array}{c|c} 0 & 0 \\ \hline Q \omega P & 0 \end{array} \right)$

$$\begin{pmatrix} PHP & PHQ \\ \hline QHP & QHQ \end{pmatrix} \begin{array}{c} \mathcal{H} = X^{-1}HX \\ \Longrightarrow \\ Q\mathcal{H}P = 0 \end{array} \begin{pmatrix} P\mathcal{H}P & P\mathcal{H}Q \\ \hline 0 & Q\mathcal{H}Q \end{pmatrix}$$

Suzuki & Lee
$$\Rightarrow X = e^{\omega}$$
 with $\omega = \left(\begin{array}{c|c} 0 & 0 \\ \hline Q \omega P & 0 \end{array} \right)$

$$\left(\begin{array}{c|c} PHP & PHQ \\ \hline \\ QHP & QHQ \end{array} \right) \begin{array}{c} \mathcal{H} = X^{-1}HX \\ \Longrightarrow \\ Q\mathcal{H}P = 0 \end{array} \left(\begin{array}{c|c} P\mathcal{H}P & P\mathcal{H}Q \\ \hline \\ 0 & Q\mathcal{H}Q \end{array} \right)$$

Suzuki & Lee
$$\Rightarrow X = e^{\omega}$$
 with $\omega = \left(\begin{array}{c|c} 0 & 0 \\ \hline Q \omega P & 0 \end{array} \right)$

Folded-diagram expansion

 \hat{Q} -box vertex function

$$\hat{Q}(\epsilon) = PH_1P + PH_1Qrac{1}{\epsilon - QHQ}QH_1F$$

⇒ Recursive equation for $H_{\rm eff}$ ⇒ iterative techniques (Krenciglowa-Kuo, Lee-Suzuki, ...)

$$\mathcal{H}_{\mathrm{eff}} = \hat{Q} - \hat{Q}^{\prime} \int \hat{Q} + \hat{Q}^{\prime} \int \hat{Q} \int \hat{Q} - \hat{Q}^{\prime} \int \hat{Q} \int \hat{Q} \int \hat{Q} \cdots$$

generalized folding

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q rac{1}{\epsilon - QHQ}QH_1P$$

The Q-box can be calculated perturbatively

$$\frac{1}{\epsilon - QHQ} = \sum_{n=0}^{\infty} \frac{(QH_1Q)^n}{(\epsilon - QH_0Q)^{n+1}}$$

The diagrammatic expansion of the \hat{Q} -box

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q rac{1}{\epsilon - QHQ}QH_1P$$

The Q-box can be calculated perturbatively

$$\frac{1}{\epsilon - QHQ} = \sum_{n=0}^{\infty} \frac{(QH_1Q)^n}{(\epsilon - QH_0Q)^{n+1}}$$

The diagrammatic expansion of the \hat{Q} -box

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q rac{1}{\epsilon - QHQ}QH_1P$$

The Q-box can be calculated perturbatively

$$\frac{1}{\epsilon - QHQ} = \sum_{n=0}^{\infty} \frac{(QH_1Q)^n}{(\epsilon - QH_0Q)^{n+1}}$$

• H^{eff} for systems with one and two valence nucleons

- \hat{Q} -box \Rightarrow Goldstone diagrams up to third order in V_{NN} (up to 2p-2h core excitations)
- Padè approximant [2|1] of the Q̂-box

$$[2|1] = V_{Qbox}^{0} + V_{Qbox}^{1} + V_{Qbox}^{2} (1 - (V_{Qbox}^{2})^{-1} V_{Qbox}^{3})^{-1} ,$$

- H^{eff} for systems with one and two valence nucleons
- \hat{Q} -box \Rightarrow Goldstone diagrams up to third order in V_{NN} (up to 2p-2h core excitations)
- Padè approximant [2|1] of the \hat{Q} -box

$$[2|1] = V_{Qbox}^{0} + V_{Qbox}^{1} + V_{Qbox}^{2} (1 - (V_{Qbox}^{2})^{-1} V_{Qbox}^{3})^{-1} ,$$

- H^{eff} for systems with one and two valence nucleons
- \hat{Q} -box \Rightarrow Goldstone diagrams up to third order in V_{NN} (up to 2p-2h core excitations)
- Padè approximant [2|1] of the Q̂-box

$$[2|1] = V_{Qbox}^0 + V_{Qbox}^1 + V_{Qbox}^2 (1 - (V_{Qbox}^2)^{-1} V_{Qbox}^3)^{-1} ,$$

Test case: *p*-shell nuclei

- L. Coraggio (INFN)
- A. Covello (UNINA and INFN)
- A. Gargano (INFN)
- T. T. S. Kuo (SUNY at Stony Brook)
- N. I. (UNINA and INFN)

L.Coraggio, A. Covello, A. Gargano, N. I., and T. T. S. Kuo, Ann. Phys. 327 2125 (2012)

First, some convergence checks

Test case: *p*-shell nuclei

- V_{NN} ⇒ chiral N³LO potential by Entem & Machleidt (smooth cutoff ≃ 2.5 fm⁻¹)
- H_{eff} for two valence nucleons outside ⁴He
- Single-particle energies and residual two-body interaction are derived from the theory. No empirical input

First, some convergence checks !

Test case: *p*-shell nuclei

- V_{NN} ⇒ chiral N³LO potential by Entem & Machleidt (smooth cutoff ≃ 2.5 fm⁻¹)
- H_{eff} for two valence nucleons outside ⁴He
- Single-particle energies and residual two-body interaction are derived from the theory. No empirical input

First, some convergence checks !

Convergence checks

The intermediate-state space Q

Q-space is truncated: intermediate states whose unperturbed excitation energy is greater than a fixed value E_{max} are disregarded

$$|\epsilon_0 - \mathcal{Q}\mathcal{H}_0\mathcal{Q}| \leq \mathcal{E}_{\max} = \mathcal{N}_{\max}\hbar\omega$$

⁶Li yrast states

results quite stable for $N_{ m max} \geq 20$

Convergence checks

The intermediate-state space Q

Q-space is truncated: intermediate states whose unperturbed excitation energy is greater than a fixed value E_{max} are disregarded

$$|\epsilon_0 - QH_0Q| \leq E_{\max} = N_{\max}\hbar\omega$$

Convergence checks

The intermediate-state space Q

Q-space is truncated: intermediate states whose unperturbed excitation energy is greater than a fixed value E_{max} are disregarded

$$|\epsilon - QH_0Q| \le E_{\max} = N_{\max}\hbar\omega$$

Order-by-order convergence

Compare results from H_{1st}^{eff} , H_{2nd}^{eff} , H_{3rd}^{eff} and H_{Pade}^{eff}

Order-by-order convergence

Dependence on $\hbar\omega$

Auxiliary potential $U \Rightarrow$ harmonic oscillator potential

INFA

Dependence on $\hbar\omega$

Auxiliary potential $U \Rightarrow$ harmonic oscillator potential

Nunzio Itaco Theory for open-shell nuclei near the limits of stability

INFN

Dependence on $\hbar\omega$

Auxiliary potential $U \Rightarrow$ harmonic oscillator potential

HF-insertions

- zero in a self-consistent basis
- neglected in most applications
- disregard of HF-insertions introduces relevant dependence on ħω

INFA

Compare the results with the "exact" ones

To compare our results with NCSM we need to start from a translationally invariant Hamiltonian

$$H_{int} = \left(1 - \frac{1}{A}\right) \sum_{i=1}^{A} \frac{p_i^2}{2m} + \sum_{i< j=1}^{A} \left(V_{ij}^{NN} - \frac{\mathbf{p}_i \cdot \mathbf{p}_j}{mA}\right) =$$

$$= \left[\sum_{i=1}^{A} \left(\frac{p_i^2}{2m} + U_i\right)\right] + \left[\sum_{i< j=1}^{A} \left(V_{ij}^{NN} - U_i - \frac{p_i^2}{2mA} - \frac{\mathbf{p}_i \cdot \mathbf{p}_i}{mA}\right)\right]$$

To compare our results with NCSM we need to start from a translationally invariant Hamiltonian

$$H_{int} = \left(1 - \frac{1}{A}\right) \sum_{i=1}^{A} \frac{p_i^2}{2m} + \sum_{i< j=1}^{A} \left(V_{ij}^{NN} - \frac{\mathbf{p}_i \cdot \mathbf{p}_j}{mA}\right) =$$

Remark

 ${\it H}^{\rm eff}$ derived for 2 valence nucleon systems \Rightarrow 3-, 4-, .. ${\it n}\text{-body}$ components are neglected

Remark

 ${\it H}^{\rm eff}$ derived for 2 valence nucleon systems \Rightarrow 3-, 4-, .. $\it n\text{-body}$ components are neglected

- ground-state energies for *N* = *Z* nuclei
- discrepancy grows with the number of valence nucleons

¹⁰B relative spectrum

¹⁰B relative spectrum

• discrepancy \leq 1 MeV

• minor role of many-body correlations

Nuclear models and predictive power

RIBs & advances in detection techniques \Rightarrow unknown structure of nuclei towards the drip lines

realistic shell-model calculations in different mass regions \Downarrow results in good agreement with experimental data

Can realistic shell-model calculations be predictive ? few selected examples

realistic shell-model calculations in different mass regions $$\Downarrow$$ results in good agreement with experimental data

Can realistic shell-model calculations be predictive ? few selected examples

realistic shell-model calculations in different mass regions $$\Downarrow$$ results in good agreement with experimental data

Can realistic shell-model calculations be predictive ? few selected examples

Few selected physics cases

- neutron-deficient tin isotopes
- Sn isotopes beyond N = 82
- heavy calcium isotopes

Single-particle energies from the experiment \Rightarrow reduced role of 3N force

Few selected physics cases

- neutron-deficient tin isotopes
- Sn isotopes beyond N = 82
- heavy calcium isotopes

Single-particle energies from the experiment \Rightarrow reduced role of 3N force

¹⁰⁰Sn is the heaviest particle-bound doubly-magic nucleus with N = Z

¹⁰⁰Sn is the heaviest particle-bound doubly-magic nucleus with N = Z

⇒ $^{102-105}$ Sn studied starting from Bonn A *NN* potential ⇒ $g_{7/2}dsh_{11/2}$ model space with 100 Sn inert core ⇒ SP energies from analysis of low-energy spectra of heavier tin isotopes ($105 \le A \le 111$)

 \Rightarrow predictions for the (at that time) unknown spectra of 102-103 Sn

Neutron-deficient Sn isotopes: shell-model results

- very good agreement with experiment
- overestimation of 2⁺ energy in $^{102}Sn \rightarrow Z=50$ cross-shell excitations (see Luigi's talk)

 10th International Spring Seminar on Nuclear Physics: New Quests in Nuclear Structure
 IOP Publishing

 Journal of Physics: Conference Series 267 (2011) 012019
 doi:10.1088/1742-6596/267/1/012019

Shell-model study of exotic Sn isotopes with a realistic effective interaction

A Covello^{1,2}, L Coraggio², A Gargano² and N Itaco^{1,2} ¹Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy ²Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy

- \Rightarrow shell-model study of Sn isotopes beyond N = 82
- \Rightarrow V_{low-k} from CD-Bonn *NN* potential
- $\Rightarrow h_{9/2} fpi_{13/2}$ model space with ¹³²Sn inert core
- \Rightarrow SP energies from ¹³³Sn

 10th International Spring Seminar on Nuclear Physics: New Quests in Nuclear Structure
 IOP Publishing

 Journal of Physics: Conference Series 267 (2011) 012019
 doi:10.1088/1742-6596/267/1/012019

Shell-model study of exotic Sn isotopes with a realistic effective interaction

A Covello^{1,2}, L Coraggio², A Gargano² and N Itaco^{1,2} ¹Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy ²Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy

\Rightarrow shell-model study of Sn isotopes beyond N = 82

... It is the aim of our study to compare the results of our calculations with the available experimental data and to make predictions for the neighboring heavier isotopes ...

Excitation energies of the 2_1^+ , 4_1^+ , and 6_1^+ states in Sn isotopes

Excitation energies of the 2_1^+ , 4_1^+ , and 6_1^+ states in Sn isotopes

Yrast 6⁺ Seniority Isomers of ^{136,138}Sn

G. S. Simpson, ^{1,23} G. Gey,^{34,5} A. Jungclaus,⁶ J. Taprogge,^{6,75} S. Nishimura,⁵ K. Sieja,⁸ P. Doornenbal,⁵ G. Lorusso,⁵ P.-A. Söderström,⁵ T. Sumikama,⁹ Z. Y. Xu,¹⁰ H. Baba,⁵ F. Browne,^{11,5} N. Fukuda,⁵ N. Inabe,⁵ T. Isobe,⁵ H.S. Jung,^{12,*} D. Kameda,⁵ G. D. Kim,¹³ Y.-K. Kim,^{13,14} I. Kojouharov,¹⁵ T. Kubo,⁵ N. Kurz,¹⁵ Y. K. Kwon,¹³ Z. Li,¹⁶ H. Sakurai,⁵¹⁰

LETTER

doi:10.1038/nature12226

Masses of exotic calcium isotopes pin down nuclear forces

F. Wienholtz¹, D. Beck², K. Blaum³, Ch. Borgmann³, M. Breitenfieldt⁴, R. B. Cakirli^{3,5}, S. George¹, F. Herfurth², J. D. Holt^{6,7}, M. Kowaka⁸, S. Kreim³, D. Lumey⁹, V. Manca⁷, J. Menéndez^{6,7}, D. Neidhert², M. Rosenbusch¹, L. Schweikhard¹, A. Schwenk^{7,0}, J. Simonis^{5,1}, J. Stanja⁶⁰, R. N. Wolf⁸ & K. Zuber¹⁰

⇒ first mass measurements of 53 Ca and 54 Ca ⇒ new method of precision mass spectroscopy with ISOLTRAP

LETTER

doi:10.1038/nature12226

Masses of exotic calcium isotopes pin down nuclear forces

F. Wienholtz¹, D. Beck², K. Blaum³, Ch. Borgmann³, M. Breitenfieldt⁴, R. B. Cakirli^{3,5}, S. George¹, F. Herfurth², J. D. Holt^{6,7}, M. Kowaka⁸, S. Kreim³, D. Lumey⁹, V. Manca⁷, J. Menéndez^{6,7}, D. Neidhert², M. Rosenbusch¹, L. Schweikhard¹, A. Schwenk^{7,0}, J. Simonis^{5,1}, J. Stanja⁶⁰, R. N. Wolf⁸ & K. Zuber¹⁰

⇒ first mass measurements of 53 Ca and 54 Ca ⇒ new method of precision mass spectroscopy with ISOLTRAP

... pronounced decrease in S_{2n} revealed by the new ⁵³Ca and ⁵⁴Ca ISOLTRAP masses ..."

"... pronounced decrease in S_{2n} revealed by the new ⁵³Ca and ⁵⁴Ca ISOLTRAP masses ..."

LETTER

doi:10.1038/nature12522

Evidence for a new nuclear 'magic number' from the level structure of 54 Ca

D. Steppenbeck¹, S. Takeuchi², N. Aoi³, P. Doornenbal², M. Matsushita¹, H. Wang², H. Baba², N. Fukuda², S. Go¹, M. Honma⁴, J. Lee⁴, K. Matsu³, S. Michimasa³, T. Motobayash², D. Nishimura⁶, T. Otsuka^{3,3}, H. Sakura^{1,2}, Y. Shiga², P.-A. Söderström², T. Sumikam^{3,4}, H. Suzuki², R. Taniuchi⁴, Y. Usuno⁴, J. J. Valience-Dobo⁶ & K. Yoned³

⇒ spectroscopic study of 54 Ca ⇒ proton knockout reactions involving 55 Sc and 56 Ti projectiles

LETTER

doi:10.1038/nature12522

Evidence for a new nuclear 'magic number' from the level structure of 54 Ca

D. Steppenbeck¹, S. Takeuchi², N. Aoi³, P. Doornenbal², M. Matsushita¹, H. Wang², H. Baba², N. Fukuda², S. Go¹, M. Honma⁴, J. Lee⁴, K. Matsu³, S. Michimara⁵, T. Ostokava^{3,} T. Motobayashi⁶, D. Nishimura⁶, T. Ostaka^{3,4}, H. Sakura^{6,2}, Y. Shiga¹, P. -A. Söderström², T. Sumikam^{3,4}, H. Suzuki², R. Tanichi⁴, Y. Ustov, J. J. Valience Dobon⁶ & K. Yoneda²

⇒ spectroscopic study of ⁵⁴Ca

⇒ proton knockout reactions involving ⁵⁵Sc and ⁵⁶Ti projectiles

Nunzio Itaco

Theory for open-shell nuclei near the limits of stability

PHYSICAL REVIEW C 80, 044311 (2009)

Spectroscopic study of neutron-rich calcium isotopes with a realistic shell-model interaction

L. Coraggio,¹ A. Covello,^{1,2} A. Gargano,¹ and N. Itaco^{1,2}

¹Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy ²Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy (Received 30 July 2009; published 12 October 2009)

⇒ shell-model study of neutron-rich calcium isotopes ⇒ *fp* model space with 40 Ca inert core ⇒ predictions for the (at that time) unknown spectra of $^{53-56}$ Ca

PHYSICAL REVIEW C 80, 044311 (2009)

Spectroscopic study of neutron-rich calcium isotopes with a realistic shell-model interaction

L. Coraggio,¹ A. Covello,^{1,2} A. Gargano,¹ and N. Itaco^{1,2}

¹Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy ²Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, ^yia Cintia, I-80126 Napoli, Italy (Received 30 July 2009; published 12 October 2009)

⇒ shell-model study of neutron-rich calcium isotopes

- \Rightarrow *fp* model space with ⁴⁰Ca inert core
- \Rightarrow predictions for the (at that time) unknown spectra of $^{53-56}$ Ca

Heavy calcium isotopes: shell-model results

Heavy calcium isotopes: shell-model results

different monopole properties

Nunzio Itaco Theory for open-shell nuclei near the limits of stability

- predictive power of realistic shell model
- role of many-body correlations
- importance of HF insertions

