

Nuclear structure for tests of fundamental symmetries

Mihai Horoi

Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

Support from NSF grant PHY-1404442 and DOE/SciDAC grants DE-SC0008529/SC0008641 is acknowledged

MSU May 15, 2015

Nuclei, a laboratory for studying fundamental interactions and fundamental symmetries

Fundamental Interactions

Nuclear and particle physicists study fundamental interactions for two basic reasons: to clarify the nature of the most elementary pieces of matter and determine how they fit together and interact. Most of what has been learned so far is embodied in the Standard Model of particle physics, a framework that has been both repeatedly validated by experimental results and is widely viewed as incomplete.

"[Scientists] have been stuck in that model, like birds in a gilded cage, ever since [the 1970s]," wrote Dennis Overbye in a July 2006 **essay** for *The New York Times*. "The Standard Model agrees with every experiment that has been performed since. But it doesn't say anything about the most familiar force of all, gravity. Nor does it explain why

the universe is matter instead of antimatter, or why we believe there are such things as space and time."

Rare isotopes produced at FRIB's will provide excellent opportunities for scientists to devise experiments that look beyond the Standard Model and search for subtle indications of hidden interactions and minutely broken symmetries and thereby help refine the Standard Model and search for new physics beyond it.

- Double-beta decay: ⁷⁶Ge, ⁸²Se, ¹³⁰Te, ¹³⁶Xe
- EDM: ¹⁹⁹Hg, ²²⁵Ra, ²¹¹Rn, etc
- PNC: ¹⁴N, ¹⁸F, ¹⁹F, ²¹Ne (PRL 74, 231 (1995))
- Beta decay: super-allowed, angular correlations, etc

Adapted from Avignone, Elliot, Engel, Rev. Mod. Phys. 80, 481 (2008) -> RMP08 MSU May 15, 2015

CENTRAL MICHIGAN

UNIVERSITY

Isotope

⁴⁸Ca

⁷⁶Ge

⁸²Se

 ^{96}Zr ¹⁰⁰Mo

¹¹⁶Cd

¹²⁸Te

¹³⁰Te

¹⁵⁰Nd

238U

 $^{136} Xe$

MSU May 15, 2015

M. Horoi CMU

 $D_{\mu} = I\partial_{\mu} - igA_{\mu}^{a}(x)T^{a}$

SM group: $SU(3)_{L} \times SU(2)_{L} \times U(1)_{V}$

 $EWSB \longrightarrow SU(3)_c \times U(1)_{em}$

 $T^a \in GA$

CENTRAL MICHIGAN TOO Small Yukawa Couplings?

$$-\mathcal{L} \supset \frac{1}{2} \overline{\psi}_{iL} Y_{ij} \psi_{jR} \phi \longrightarrow \frac{1}{2} m_{Dij} \overline{\psi}_{iL} \psi_{jR} \quad \left(m_{Dij} = Y_{ij} \mathbf{v} \right)$$

 $-\mathcal{L} \supset \frac{1}{2} m_{LR} \overline{\nu}_{R}^{\prime c} \nu_{L}^{\prime c}$

Majorana

SciDAC

MSU May 15, 2015

M. Horoi CMU

Standard Model

fermion masses

CENTRAL MICHIGAN

The origin of Majorana neutrino masses

Diagram illustrating the type I see-saw mechanism

Low-energy LR contributions to $0\nu\beta\beta$ decay

Low-energy effective Hamiltonian

$$\mathcal{H}_W = \frac{G_F}{\sqrt{2}} j_L^\mu J_{L\mu}^+ + h.c.$$

 $j_{L/R}^{\mu} = \overline{e} \gamma^{\mu} (1 \mp \gamma^5) v_e$

(b)

(d)

 $\begin{aligned} \mathcal{H}_{W} &= \frac{G_{F}}{\sqrt{2}} \Big[j_{L}^{\mu} \Big(J_{L\mu}^{+} + \kappa J_{R\mu}^{+} \Big) + j_{R}^{\mu} \Big(\eta J_{L\mu}^{+} + \lambda J_{R\mu}^{+} \Big) \Big] + h.c. \\ Left - right \ symmetric \ \mathrm{mod} \ el \end{aligned}$

No neutrino exchange

MSU May 15, 2015

(a)

(c)

CENTRAL MICHIGAN Is there a more general description?

MSU May 15, 2015

More long-range contributions?

SUSY/*wR* – *parity v*.: *e.g. Rep*.Pr*og*.*Phys.* 75,106301(2012)

Hadronization /w R-parity v. and heavy neutrino

SUSY & LRSM : Prezeau, Ramsey – Musolf, Vogel, PRC 68,034016 (2003)

$$\frac{1}{T_{1/2}} = \frac{1}{64\pi^5 \ln 2} \left(\frac{\hbar c}{R}\right)^6 \frac{g_A^4}{\hbar} \frac{G_F^4}{\Lambda_{\beta\beta}^2 c^4} \int_{m_e}^{E_{\beta\beta}-m_e} dE_1 F(Z+2,E_1) F(Z+2,E_2) \frac{1}{2} \left\{ \left[\left| \beta_3 \mathcal{M}_2^{\pi\pi} + \frac{\sqrt{2}\Lambda_H}{g_A M} \zeta_5 \mathcal{M}_2^{\pi NN} \right|^2 + \left| \beta_4 \mathcal{M}_2^{\pi\pi} + \frac{\sqrt{2}\Lambda_H}{g_A M} \zeta_5 \mathcal{M}_2^{\pi NN} \right|^2 + \left| \beta_4 \mathcal{M}_2^{\pi\pi} + \frac{\sqrt{2}\Lambda_H}{g_A M} \zeta_5 \mathcal{M}_2^{\pi NN} \right|^2 \right] p_1 E_1 p_2 E_2 - \left[\left| \beta_3 \mathcal{M}_2^{\pi\pi} - \frac{\sqrt{2}\Lambda_H}{g_A M} \zeta_5 \mathcal{M}_2^{\pi NN} \right|^2 - \left| \beta_4 \mathcal{M}_2^{\pi\pi} - \frac{\sqrt{2}\Lambda_H}{g_A M} \zeta_6 \mathcal{M}_2^{\pi NN} \right|^2 \right] p_1 p_2 m_e^2 \right],$$

MSU May 15, 2015

Summary of 0vDBD mechanisms

- The mass mechanism (a.k.a. light-neutrino exchange) is likely, and the simplest BSM scenario.
- Low mass sterile neutrino would complicate analysis
- Right-handed heavy-neutrino exchange is possible, and requires knowledge of half-lives for more isotopes.
- η and λ mechanisms are possible, but could be ruled in/out by energy and angular distributions.
- Left-right symmetric model may be also (un)validated at LHC/colliders.
- SUSY/R-parity, KK, GUT, etc, scenarios need to be checked, but validated by additional means.

2v Double Beta Decay (DBD) of ⁴⁸Ca

$$T_{1/2}^{-1} = G_{2\nu}(Q_{\beta\beta}) \Big[M_{GT}^{2\nu}(0^+) \Big]^2$$

$$M_{\rm GT}^{2\nu}(0^+) = \sum_k \frac{\langle 0_f \| \sigma \tau^- \| 1_k^+ \rangle \langle 1_k^+ \| \sigma \tau^- \| 0_i \rangle}{E_k + E_0}$$

 $^{48}Ca \xrightarrow{2\nu\beta\beta} {}^{48}Ti$

The choice of valence space is important!

$$B(GT) = \frac{\left|\left\langle f \parallel \sigma \cdot \tau \parallel i\right\rangle\right|^2}{(2J_i + 1)}$$

ISR	48Ca	48Ti
pf	24.0	12.0
f7 p3	10.3	5.2

 $Ikeda \ sum \ rule(ISR) = \sum B(GT; Z \rightarrow Z + 1) - \sum B(GT; Z \rightarrow Z - 1) = 3(N - Z)$

Horoi, Stoica, Brown, PRC **75**, 034303 (2007)

CENTRAL MICHIGAN

Closure Approximation and Beyond in Shell Model

$$M_{S}^{0v} = \sum_{\substack{j,p < p' \\ n < n' \\ p < n}} (\Gamma) \left\langle \overline{0_{f}^{+} \left\| \left[\left(a_{p}^{+} a_{p'}^{+} \right)^{g} \left(\tilde{a}_{n} \cdot \tilde{a}_{n} \right)^{g} \right]^{0} \left| 0_{i}^{+} \right\rangle} \right\rangle \left\langle p p'; g \right| \int q^{2} dq \left[\hat{S} \frac{h(q) j_{\kappa}(qr) G_{FS}^{2} f_{SRC}^{2}}{q(q + \langle E \rangle)} \tau_{1-} \tau_{2-} \right] \left| n n'; g \right\rangle - closure$$

$$M_{S}^{0v} = \sum_{\substack{pp' nn' \\ j \\ k g}} (\tilde{\Gamma}) \left\langle 0_{f}^{+} \left\| \left(a_{p}^{+} \tilde{a}_{n} \right)^{J} \right\| J_{k} \right\rangle \left\langle J_{k} \left\| \left(a_{p'}^{+} \tilde{a}_{n'} \right)^{J} \right\| 0_{i}^{+} \right\rangle \left\langle p p'; g \right| \int q^{2} dq \left[\hat{S} \frac{h(q) j_{\kappa}(qr) G_{FS}^{2} f_{SRC}^{2}}{q(q + \langle E \rangle)} \tau_{1-} \tau_{2-} \right] \left| n n'; g \right\rangle - beyond$$

Challenge: there are about 100,000 J_k states in the sum for 48Ca

Much more intermediate states for heavier nuclei, such as ⁷⁶Ge!!!

 $M^{0\nu} = M_{GT}^{0\nu} - (g_V / g_A)^2 M_F^{0\nu} + M_T^{0\nu}$ $\hat{S} = \begin{cases} \sigma_1 \tau_1 \sigma_2 \tau_2 & Gamow - Teller (GT) \\ \tau_1 \tau_2 & Fermi (F) \\ [3(\vec{\sigma}_1 \cdot \hat{n})(\vec{\sigma}_2 \cdot \hat{n}) - (\vec{\sigma}_1 \cdot \vec{\sigma}_2)] \tau_1 \tau_2 & Tensor (T) \end{cases}$ MSU May 15, 2015

No-closure may need states out of the model space (not considered).

M. Horoi CMU

Minimal model spaces

- 82 Se : 10M states
- 130 Te : 22M states
- ⁷⁶Ge : 150M states

New Approach to calculate NME: New Tests of Nuclear Structure

CENTRAL MICHIGAN 136 Xe $\beta\beta$ Experimental Results

Publication	Experiment	$T^{2\nu}_{1/2}$	T ⁰ v _{1/2} (lim)	T ^{0v} _{1/2} (Sens)
PRL 110, 062502	KamLAND-Zen		> 1.9x10 ²⁵ y	1.1x10 ²⁵ y
PRC 89, 015502	EXO-200	$(2.11\pm0.04\pm0.21)$ x10 ²¹ y		
Nature 510, 229	EXO-200		>1.1x10 ²⁵ y	1.9x10 ²⁵ y
PRC 85, 045504	KamLAND-Zen	$(2.38 \pm 0.02 \pm 0.14) \times 10^{21} \text{ y}$		
	1	$M_{\rm exp}^{2\nu} = 0.0191 - 0.0215 Me$	eV^{-1}	
10^{26} $(J) = 0.5$ 10^{25} 10^{25} 10^{25} 0.4 0.8 0.7 0.5	6.4 0.2 0.2 GERDA Sensitivity EXO-200 Limit EXO-200 Limit EXO-200 Limit EXO-200 Limit	D-200 iv:1402.6956, ure 510, 229 M. Horoi M. Horoi $\begin{bmatrix} 10 & \text{first order} \\ 9 & 136 \\ 7 & 9 \\ 136 \\ 5 & 5 \\ -7 & -7 \\ -6 & -5 \\ -5 & -4 & -3 \\ -4 & -3 & -2$	beta decay energet A=136 136 Cs β β^{136} Cs β^{136}	cally forbidden β^+ 59 Pr a^{136} Ce
τ _{1/2} ¹⁰	(e (yr)	(MeV)	¹³⁶ 56 Ba	

QRPA-En M. T. Mustonen and J. Engel, Phys. Rev. C 87, 064302 (2013).

QRPA-Jy J. Suhonen, O. Civitarese, Phys. NPA 847 207-232 (2010).

QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv:1408.6077

ISM-Men J. Menéndez, A. Poves, E. Caurier, F. Nowacki, NPA 818 139–151 (2009).

SM M. Horoi et. al. PRC 88, 064312 (2013), PRC 89, 045502 (2014), PRC 89, 054304 (2014), PRC 90, 051301(R) (2014), PRC

91, 024309 (2015), PRL 110, 222502 (2013), PRL 113, 262501(2014).

MSU May 15, 2015

NME for the heavy-neutrino exchange mechanism

IBA-2 J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C **87**, 014315 (2013).

QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv:1408.6077

SM M. Horoi et. al. PRC **88**, 064312 (2013), PRC **90**, PRC **89**, 054304 (2014), PRC **91**, 024309 (2015), PRL **110**, 222502 (2013).

MSU May 15, 2015

The effect of larger model spaces for ⁴⁸Ca

M(0 v)	SDPFU	SDPFMUP	
0 ħω	0.941	0.623	
$0+2\hbar\omega$	1.182 (26%)	1.004 (61%)	

SDPFU: PRC 79, 014310 (2009)

SDPFMUP: PRC 86, 051301(R) (2012)

	M(0v)		
$0 \hbar \omega / \text{GXPF1A}$	0.733		
$0 \hbar \omega + 2^{nd}$ ord./GXPF1A	1.301 (77%)		

arXiv:1308.3815, PRC 89, 045502 (2014)

PRC 87, 064315 (2013)

Experimental info needed

TABLE I. The calculated $B(E2) \uparrow$ values on the first line compared to the adopted ones on the second line.

	^{128}Te	^{130}Te	^{132}Te	^{130}Xe	^{132}Xe	^{136}Xe	^{136}Ba
$B(E2)\uparrow_{th.}$	0.202	0.153	0.085	0.502	0.390	0.215	0.479
$B(E2)\uparrow_{ad.}$	0.380	0.297	0.207	0.634	0.468	0.217	0.413

0.1-500 1.000 2.500 0.05-

MSU May 15, 2015

CENTRAL MICHIGAN

⁴⁸Ca: $M^{0\nu}$ vs the Effective Interaction and SRC

$$Prediction: \left\langle M^{0v} \right\rangle = 0.85 \pm 0.15 \xrightarrow{T_{1/2}(0v) \ge 10^{26} y} \left\langle m_{\beta\beta} \right\rangle \le 0.230 \pm 0.045 eV$$

MSU May 15, 2015

M. Horoi CMU

Observation of 0νββ will signal New Physics Beyond the Standard Model.

Black box theorem (all flavors + oscillations)

(i) Neutrinos are Majorana fermions.

Take-Away Points

 $0\nu\beta\beta$ observed \Leftrightarrow at some level

(ii) Lepton number conservation is violated by 2 units

$$(iii) \quad \left\langle m_{\beta\beta} \right\rangle = \left| \sum_{k=1}^{3} m_k U_{ek}^2 \right| = \left| c_{12}^2 c_{13}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right| > 0$$

Regardless of the dominant $0\nu\beta\beta$ mechanism!

 $\langle m_{\beta\beta} \rangle = \langle m_{\nu} \rangle = |c_{12}^2 c_{13}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3}|$

$$T_{1/2}^{-1}(0v) = G^{0v}(Q_{\beta\beta}) \left[M^{0v}(0^{+}) \right]^{2} \left(\frac{\langle m_{\beta\beta} \rangle}{m_{e}} \right)^{2}$$

$$\phi_2 = \alpha_2 - \alpha_1 \qquad \phi_3 = -\alpha_1 - 2\delta$$

Take-Away Points

Extracting information about Majorana CP-violation phases may require the mass hierarchy from LBNE(DUNE), cosmology, etc, but also accurate Nuclear Matrix Elements.

Extracting information about Majorana $\langle m_{\beta\beta} \rangle = |c_{12}^2 c_{13}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3}|$ CP-violation phases may require the $\phi_2 = \alpha_2 - \alpha_1 \quad \phi_3 = -\alpha_1 - 2\delta$

$$\Sigma = m_1 + m_2 + m_3$$
 from cosmology

MSU May 15, 2015

M. Horoi CMU

arXiV:1505.02722

ŧ.

UNIVERSITY

MSU May 15, 2015

Take-Away Points

Alternative mechanisms to $0\nu\beta\beta$ need to be carefully tested: many isotopes, energy and angular correlations.

These analyses also require **accurate Nuclear Matrix Elements**.

$$|\eta_{v}|, |\eta_{NR}| \leftarrow \begin{cases} \left[G_{Ge}^{0v}T_{1/2Ge}^{0v}\right]^{-1} = \left|M_{Ge}^{(0v)}\right|^{2}\left|\eta_{v}\right|^{2} + \left|M_{Ge}^{(0N)}\right|^{2}\left|\eta_{NR}\right|^{2} \\ \left[G_{Xe}^{0v}T_{1/2Xe}^{0v}\right]^{-1} = \left|M_{Xe}^{(0v)}\right|^{2}\left|\eta_{v}\right|^{2} + \left|M_{Xe}^{(0N)}\right|^{2}\left|\eta_{NR}\right|^{2} \end{cases}$$

Dints

$$1.5$$

 0
 0
 0
 0
 0.0
 0.0
 0.2
 0.4
 0.6
 0.6
 0.2
 0.4
 0.6
 0.8
 1.0
 $|\Delta t|/Q$
SuperNEMO; ⁸²Se
 10
 0.5
 0.5
 10
 0.5
 0.5
 10
 0.5
 0.5
 0.5
 0.5
 10
 0.5
 0.5
 0.5
 10
 0.5
 10
 0.5
 0.5
 10
 0.5
 0.5
 10
 0.5
 0.5
 10
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0

$$\left[T_{1/2}^{0\nu} \right]^{-1} = G^{0\nu} \left| \sum_{j} M_{j} \eta_{j} \right|^{2} = G^{0\nu} \left| M^{(0\nu)} \eta_{\nu L} + M^{(0N)} (\eta_{NL} + \eta_{NR}) + \tilde{X}_{\lambda} \right| < \lambda > + \tilde{X}_{\eta} < \eta > + M^{(0\lambda')} \eta_{\lambda'} + M^{(0\tilde{q})} \eta_{\tilde{q}} + \cdots \right|^{2}$$

$$MSU May 15, 2015 \qquad M. \text{ Horoi CMU}$$

Amplitude (a.u.)

2

1.5

1

0.5

CENTRAL MICHIGAN Take-Away Points

Accurate shell model NME for **different decay mechanisms** were recently calculated.

The method provides **optimal closure energies** for the mass mechanism.

Decomposition of the matrix elements can be used for **selective quenching** of classes of states, and for testing nuclear structure.

$$M_{mixed}(N) = M_{no-closure}(N) + \left[M_{closure}(N = \infty) - M_{closure}(N)\right]$$

Collaborators:

- Alex Brown, NSCL@MSU
- Roman Senkov, CMU and CUNY
- Andrei Neacsu, CMU
- Jonathan Engel, UNC
- Jason Holt, TRIUMF

