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• choose relevant degrees of 
freedom: here nucleons and pions

•operators constrained by 
symmetries of QCD

• short-range physics captured in 
few short-range couplings

• separation of scales: Q << Λb, 
breakdown scale Λb~500 MeV

• power-counting:                 
expand in powers Q/Λb

• systematic: work to desired 
accuracy, obtain error estimates

Chiral effective field theory for nuclear forces
                    NN       3N           4N

2006

1995

2011

treatment of NN and 3N forces 
not consistent in present          

ab initio calculations
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Figure 28. Ground-state energies per nucleon of closed-shell nuclei using IM-
SRG(2) at di↵erent SRG resolution scales � [85]. Results with NN+3N-induced
Hamiltonians are shown on top while the bottom includes initial 3NF. The black bars
are experimental energies.
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Figure 29. Ground-state energy of oxygen isotopes from the IM-SRG for di↵erent
SRG parameters � [87]. Top: Chiral NN Hamiltonian and induced 3N interaction (no
initial 3N terms). Bottom: Consistently evolved chiral NN and 3N Hamiltonian. The
pluses are experimental data from Ref. [88].

can be used as a microscopic input to traditional shell model approaches [63]. Shell

Model calculations with IM-SRG Hamiltonians will yield complete spectroscopic

information, and are in this sense complementary to the direct calculation of excited

states in the IM-SRG framework. A combined IM-SRG/Shell Model approach is

the most practical way to study deformed nuclei in the near future.

Hergert et al. ,
PRL 110, 242501 (2013)

oxygen chain

Open issues in nuclear interactions

• remarkable agreement between different many-body frameworks 

• significant overbinding in heavy nuclei
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FIG. 5: (Color online) Ground-state energies from CR-CC(2,3) for (a) the NN+3N-induced Hamiltonian starting from the N3LO and N2LO-
optimized NN interaction and (c) the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c and Λ3N = 350 MeV/c. The boxes represent the
spread of the results from α = 0.04 fm4 to α = 0.08 fm4, and the tip points into the direction of smaller values of α. Also shown are the
contributions of the CR-CC(2,3) triples correction to the (b) NN+3N-induced and (d) NN+3N-full results. All results employ !Ω = 24 MeV
and 3N interactions with E3max = 18 in NO2B approximation and full inclusion of the 3N interaction in CCSD up to E3max = 12. Experimental
binding energies [32] are shown as black bars.

ies have shown that for both cutoffs, the induced 4N inter-
action are small up into the sd-shell [6, 9]. For heavier nuclei,
Fig. 5(c) reveals that the α-dependence of the ground-state
energies remains small for Λ3N = 400 MeV/c up to the heav-
iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
ditional repulsive 4N contributions originating from the ini-
tial chiral 3N interaction. By reducing the initial 3N cutoff
to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.

Binder et al. , Phys. Lett B 736, 119 (2014)

heavy nuclei
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Figure 28. Ground-state energies per nucleon of closed-shell nuclei using IM-
SRG(2) at di↵erent SRG resolution scales � [85]. Results with NN+3N-induced
Hamiltonians are shown on top while the bottom includes initial 3NF. The black bars
are experimental energies.
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Figure 29. Ground-state energy of oxygen isotopes from the IM-SRG for di↵erent
SRG parameters � [87]. Top: Chiral NN Hamiltonian and induced 3N interaction (no
initial 3N terms). Bottom: Consistently evolved chiral NN and 3N Hamiltonian. The
pluses are experimental data from Ref. [88].

can be used as a microscopic input to traditional shell model approaches [63]. Shell

Model calculations with IM-SRG Hamiltonians will yield complete spectroscopic

information, and are in this sense complementary to the direct calculation of excited

states in the IM-SRG framework. A combined IM-SRG/Shell Model approach is

the most practical way to study deformed nuclei in the near future.

Hergert et al. ,
PRL 110, 242501 (2013)
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FIG. 5: (Color online) Ground-state energies from CR-CC(2,3) for (a) the NN+3N-induced Hamiltonian starting from the N3LO and N2LO-
optimized NN interaction and (c) the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c and Λ3N = 350 MeV/c. The boxes represent the
spread of the results from α = 0.04 fm4 to α = 0.08 fm4, and the tip points into the direction of smaller values of α. Also shown are the
contributions of the CR-CC(2,3) triples correction to the (b) NN+3N-induced and (d) NN+3N-full results. All results employ !Ω = 24 MeV
and 3N interactions with E3max = 18 in NO2B approximation and full inclusion of the 3N interaction in CCSD up to E3max = 12. Experimental
binding energies [32] are shown as black bars.

ies have shown that for both cutoffs, the induced 4N inter-
action are small up into the sd-shell [6, 9]. For heavier nuclei,
Fig. 5(c) reveals that the α-dependence of the ground-state
energies remains small for Λ3N = 400 MeV/c up to the heav-
iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
ditional repulsive 4N contributions originating from the ini-
tial chiral 3N interaction. By reducing the initial 3N cutoff
to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.

Binder et al. , Phys. Lett B 736, 119 (2014)

• power counting?

• missing NN and many-body contributions? 

• optimized fitting procedures? 

heavy nuclei



Chiral effective field theory
nuclear interactions and currents 

nuclear structure and 
reaction observables

Development of novel NN+3N chiral EFT potentials 

predictions
validation

optimization
power counting?

study order-by-order convergence         estimates of theoretical uncertainties



Chiral 3N forces at subleading order (N3LO)
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FIG. 3. 2π -1π diagrams at N3LO. Graphs resulting from the interchange of the nucleon lines are not shown. For notation see
Figs. 1 and 2.

lines of Ref. [24]. From the remaining graphs in Fig. 2, diagram
(11) does not contribute at the considered order owing to the
1/m suppression caused by the time derivative entering the
Weinberg-Tomozawa vertex.3 For the same reason, diagram
(25) also leads to a vanishing result at the order considered.
Here, the time derivative acts either on the pions exchanged
between two nucleons, leading to a 1/m suppression, or on
the pion in the tadpole, giving an odd power of the loop
momentum l0 to be integrated over. Further, it is easy to see
that Feynman diagrams (18) and (21) also do not contribute.
Diagram (29) involves one insertion of the ππNN vertices of
dimension ν = 2. The relevant vertices are proportional to the
LECs d1,2,3,5,14,15 and d̃24,26,27,28,30. The corresponding 3NF is
shifted to higher orders since all these vertices involve at least
one time derivative (see Ref. [20] for explicit expressions).
Last but not least, we also found that diagram (33) does not
generate any 3NF. Thus, we are left with diagrams (5)–(7),
(19), and (20). The 3NF contribution from diagrams (5)–(7)
can be evaluated straightforwardly by using the expressions
for the effective Hamilton operator from Ref. [24]. Diagrams
(19) and (20) do not involve reducible topologies and can
be evaluated by using the Feynman graph technique. Notice
that the individual contributions from graphs (19) and (20) in
Fig. 2 and from diagram (20) in Fig. 3 depend on the
arbitrary constant α, which specifies the parametrization of the
matrix U [see Eq. (2.2)]. Clearly, their sum is α-independent.

3This graph does not involve reducible time-ordered topologies. Its
contribution to the nuclear force is, therefore, most easily obtained
by using the Feynman graph technique. The 1/m suppression from
the time derivative entering the Weinberg-Tomozawa vertex follows
then simply from the four-momentum conservation.

We are now in the position to present our results. The
expressions for diagrams (5)–(7) and (19) can be cast into
the form of Eq. (2.6), leading only to shifts in the values of
the LECs ci :

c1 → c̄1 = c1 − g2
A Mπ

64πF 2
π

, c3 → c̄3 = c3 + g4
A Mπ

16πF 2
π

,

c4 → c̄4 = c4 − g4
A Mπ

16πF 2
π

, (2.8)

with δc1 = −0.13 GeV−1 and δc3 = −δc4 = 0.52 GeV−1.
These shifts are of the order of 20% to 30% of the correspond-
ing LECs and thus cannot be neglected in precision studies
of 3NFs. In contrast to this, the contribution from graph (20)
takes a more complicated form compared to Eq. (2.6) and is
given by

V
(4)

2π = g4
A

256πF 6
π

σ⃗1 · q⃗1 σ⃗3 · q⃗3[
q2

1 + M2
π

][
q2

3 + M2
π

]

×
[
τ 1 · τ 3

(
Mπ

(
M2

π + 3q2
1 + 3q2

3 + 4q⃗1 · q⃗3
)

+
(
2M2

π + q2
1 + q2

3 + 2q⃗1 · q⃗3
)

(2.9)

×
(
3M2

π + 3q2
1 + 3q2

3 + 4q⃗1 · q⃗3
)
A(q2)

)

− τ 1 × τ 3 · τ 2 q⃗1 × q⃗3 · σ⃗2

×
(
Mπ + (4M2

π + q2
1 + q2

3 + 2q⃗1 · q⃗3)A(q2)
)]

.

Here, we have used dimensional regularization to evaluate the
loop integrals. In this framework, the loop function A(q) is
given by

A(q) = 1
2q

arctan
q

2Mπ

. (2.10)
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key for 
• consistency
• tests 
• improved precision
• uncertainty estimates 
of the theory 
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• first calculations of N3LO 3NF and 4NF

contributions to EOS of neutron matter

• found large contributions in Hartree Fock appr.,

comparable to size of N2LO contributions
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FIG. 2. (Color online) Energy per particle versus density for all individual N3LO 3N and 4N force contributions to neutron
matter at the Hartree-Fock level. The bands are obtained by varying the 3N/4N cutoff Λ = 2 − 2.5 fm−1. For the two-pion-
exchange–contact and the relativistic-corrections 3N forces, the different bands correspond to the different NN contacts, CT

and CS , determined consistently for the N3LO EM/EGM potentials. The inset diagram illustrates the 3N/4N force topology.

ity of the energy to the single-particle spectrum used.
We find that the energy changes from second to third
order, employing a free or Hartree-Fock spectrum, by
0.8, 0.4, 1.3MeV (1.4, 0.9, 2.7MeV) per particle at n0/2
(n0) for the EGM 450/500, 450/700, EM 500 N3LO po-
tentials, respectively. The results, which include all these
uncertainties, are displayed by the bands in Fig. 1. Un-
derstanding the cutoff dependence and developing im-
proved power counting schemes remain important open
problems in chiral EFT [21]. For the neutron matter en-
ergy at n0, our first complete N3LO calculation yields
14.1 − 21.0MeV per particle. If we were to omit the
results based on the EM 500 N3LO potential, as it con-
verges slowest at n0, the range would be 14.1−18.4MeV.

As we find relatively large contributions from N3LO
3N forces, it is important to study the EFT convergence
from N2LO to N3LO. This is shown in Fig. 3 for the
EGM potentials (N2LO is not available for EM), where
the N3LO results are found to overlap with the N2LO
band across a ±1.5MeV range around 17MeV at satura-
tion density. As expected from the net-attractive N3LO
3N contributions in Fig. 2, the N3LO band yields lower
energies. For the N2LO band, we have estimated the the-
oretical uncertainties in the same way, and the neutron
matter energy ranges from 15.5 − 21.4MeV per particle

at n0. The theoretical uncertainty is reduced from N2LO
to N3LO to 14.1 − 18.4MeV, but not by a factor ∼ 1/3
based on the power counting estimate. This reflects the
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FIG. 3. (Color online) Neutron matter energy per particle as
a function of density at N2LO (upper/blue band that extends
to the dashed line) and N3LO (lower/red band). The bands
are based on the EGM NN potentials and include uncertainty
estimates as in Fig. 1.

Contributions of many-body forces at N3LO in neutron matter
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illustrates the 3N/4N force topology of the particular contribution.

This is in agreement with our result for the sum of these
two topologies: �(56±2) keV, where the small difference
is due to f

R

= 1 in Refs. [44, 47]. So far only the leading
4N forces have been derived completely. Recently, Kaiser
studied � contributions to 4N forces [44], which enter at

N4LO in �-less chiral EFT. Similarly to the N3LO versus
N2LO 3N forces, these contributions are enhanced by the
large c

i

values, and Kaiser found for these partial N4LO
4N contributions a larger energy of ⇠ 2MeV per particle
at saturation density.
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illustrates the 3N/4N force topology of the particular contribution.

This is in agreement with our result for the sum of these
two topologies: �(56±2) keV, where the small difference
is due to f
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= 1 in Refs. [44, 47]. So far only the leading
4N forces have been derived completely. Recently, Kaiser
studied � contributions to 4N forces [44], which enter at

N4LO in �-less chiral EFT. Similarly to the N3LO versus
N2LO 3N forces, these contributions are enhanced by the
large c

i

values, and Kaiser found for these partial N4LO
4N contributions a larger energy of ⇠ 2MeV per particle
at saturation density.
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This is in agreement with our result for the sum of these
two topologies: �(56±2) keV, where the small difference
is due to f

R

= 1 in Refs. [44, 47]. So far only the leading
4N forces have been derived completely. Recently, Kaiser
studied � contributions to 4N forces [44], which enter at

N4LO in �-less chiral EFT. Similarly to the N3LO versus
N2LO 3N forces, these contributions are enhanced by the
large c

i

values, and Kaiser found for these partial N4LO
4N contributions a larger energy of ⇠ 2MeV per particle
at saturation density.
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This is in agreement with our result for the sum of these
two topologies: �(56±2) keV, where the small difference
is due to f
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= 1 in Refs. [44, 47]. So far only the leading
4N forces have been derived completely. Recently, Kaiser
studied � contributions to 4N forces [44], which enter at

N4LO in �-less chiral EFT. Similarly to the N3LO versus
N2LO 3N forces, these contributions are enhanced by the
large c
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values, and Kaiser found for these partial N4LO
4N contributions a larger energy of ⇠ 2MeV per particle
at saturation density.
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4N forces have been derived completely. Recently, Kaiser
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Conclusions/Indications:
• N3LO 3N contributions significant
• N3LO 4N contributions small 



Representation of 3N interactions in momentum space

|pq�⇥ i � |piqi; [(LS)J(lsi)j]JJz(Tti)T Tz⇥

p
q
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q
p

q

|pq��1 |pq��2 |pq��3
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33

Due to the large number of matrix elements, the traditional way of 

computing matrix elements requires extreme amounts of computer resources.

Np ' Nq ' 15

N↵ ' 30� 180
dim[hpq↵|V123|p0q0↵0i] ' 107 � 1010

Number of matrix elements was so far 

not sufficient for studies of            systems.A � 4



Calculation of 3N forces in momentum 
partial-wave representation

traditional method:
• reduce dimension of angular integrals from 8 to 5 by using symmetry

• discretize angular integrals and perform all sums numerically

hpq↵|V123|p0q0↵0i ⇠
X

mi

Z
dp̂ dq̂ dp̂0 dq̂0Y m

l (p̂)Y m̄
l̄ (q̂) hpqST |V123|p0q0S0T 0iY m0

l0 (p̂0)Y m̄0

l̄0 (q̂0)



Calculation of 3N forces in momentum 
partial-wave representation

traditional method:
• reduce dimension of angular integrals from 8 to 5 by using symmetry

• discretize angular integrals and perform all sums numerically

hpq|V123|p0q0i = V123(p� p0,q� q0
)

= V123(p� p0, q � q0, cos ✓)

new method:
• use that all interaction contributions (except rel. corr.) are local:

       allows to perform all except 3 integrals analytically

• only a few small discrete internal sums need to be 

performed for each external momentum and angular momentum

hpq↵|V123|p0q0↵0i ⇠
X

mi

Z
dp̂ dq̂ dp̂0 dq̂0Y m

l (p̂)Y m̄
l̄ (q̂) hpqST |V123|p0q0S0T 0iY m0

l0 (p̂0)Y m̄0

l̄0 (q̂0)



Tests of the new framework
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• perfect agreement with results based on traditional approach

• speedup factors of >1000

• very general, can also be applied to 

‣pion-full EFT 
‣N4LO terms
‣currents?

• efficient: allows to study systematically alternative regulators



• all 3N topologies are calculated and stored separately,
allows to easily adjust values of LECs and the cutoff value and form
of non-local regulators

• calculated matrix elements of Faddeev components 

as well as antisymmetrized matrix elements

• HDF5 file format for efficient I/O

• current model space limits:

Current status of calculations

⌦
pq↵|V i

123|p0q0↵0↵

⌦
pq↵|(1 + P123 + P132)V

i
123(1 + P123 + P132)|p0q0↵0↵

http://www.hdfgroup.org

J T J12

max

size [GB]
1/2 1/2 8 1.0
3/2 1/2 8 3.2
5/2 1/2 8 6.2
7/2 1/2 7 6.9
9/2 1/2 6 6.2
1/2 3/2 8 0.3
3/2 3/2 8 0.8
5/2 3/2 8 1.8
7/2 3/2 7 1.8
9/2 3/2 6 1.8

⇠ 0.5 TB

http://www.hdfgroup.org
http://www.hdfgroup.org


Partial wave convergence:
energy of infinite matter in Hartree-Fock approximation

KH, Krebs, Epelbaum, Golak, Skibinski,
PRC 91, 044001 (2015)

neutron matter:

• in PNM only matrix elements with             contribute                             

• resummation up to             leads to well converged results

• essentially perfect agreement with ‘exact’ results (cf. PRC88, 025802)

T = 3/2

J = 9/2



Partial wave convergence:
energy of infinite matter in Hartree-Fock approximation

symmetric nuclear matter:

• resummation up to             leads to well converged results

• essentially perfect agreement with ‘exact’ results (cf. PRC88, 025802)
J = 9/2

KH, Krebs, Epelbaum, Golak, Skibinski,
PRC 91, 044001 (2015)
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Contributions of individual topologies in 3H
for specific choices of NN interactions and regulator functions!

KH, Krebs, Epelbaum, Golak, Skibinski,
PRC 91, 044001 (2015)

• contributions of individual contributions depend sensitively on details
• N3LO contributions not suppressed compared to N2LO
• perturbativeness of 3NF strongly depends on NN interaction 
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cuto↵ of ⇤ = 2.0 fm�1 to improve the convergence of the MBPT. Other calculations

show the predictive power of the method for shell structure and pairing gaps [62],

excitation spectra [59], and properties of proton-rich nuclei [61]. On-going work seeks

to extend the framework to include continuum e↵ects for weakly bound or unbound

states, to develop nonperturbative methods for valence shell interactions [63], to relate

to phenomenological models, and to quantify theoretical uncertainties.

4.2. Ab initio calculations with three-nucleon forces

The frontier for RG-based ab initio calculations of finite nuclei using microscopic inter-

nucleon forces is the inclusion of 3NF. The SRG has made possible the inclusion of

consistently evolved 3NF in a harmonic oscillator basis [27, 30], which means 3NF

are present in the initial Hamiltonian but also induced as a result of RG evolution.The oxygen anomaly - impact of 3N forces 
include “normal-ordered” 2-body part of 3N forces (enhanced by core A) 

leads to repulsive interactions between  
can understand partly based on Pauli  

d3/2 orbital remains unbound from 16O to 28O 

first microscopic explanation of the oxygen anomaly 
Otsuka, Suzuki, Holt, AS, Akaishi (2010) 

Figure 19. Interaction between valence neutrons and a core nucleon in an oxygen
isotope through a three-body force [33].
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Figure 20. Predictions for two-neutron separation energy and pairing gaps in calcium
isotopes including three-body forces compared to new experimental measurements [60].

Future directions:
Incorporation in different many-body frameworks

valence shell model

Hyperspherical harmonics

coupled cluster methodno-core shell model

Faddeev,
Faddeev-Yakubovski

Many-body
perturbation theory

Self-consistent
Greens function 

In-medium SRG
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One-body Green’s function (or propagator) describes the motion of quasi- 
particles and holes: 
 
 
 
 
 …this contains all the structure information probed by nucleon transfer 
!"#$%&'()*+,-%./-0: 

Green’s functions in many-body theory 
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FIG. 1: (Color online) Left. One of the diagrams included in the correlated self-energy, Σ̃(ω). Arrows up (down) refer to quasiparticle
(quasihole) states, the Π(ph) propagators include collective ph and charge-exchange resonances, and the gII include pairing between two

particles or two holes. The FRPA method sums analogous diagrams, with any numbers of phonons, to all orders [21, 25]. Right. Single-

particle spectral distribution for neutrons in 56Ni, obtained from FRPA. Energies above (below) EF are for transitions to excited states of
57Ni (55Ni). The quasiparticle states close to the Fermi surface are clearly visible. Integrating over r [Eq. (4)] gives the SFs reported in Tab. I.

poles give the experimental energy transfer for nucleon pickup

(knockout) to the excited states of the systems with A+1 (A-1)

particles. The propagator (2) is obtained by solving the Dyson

equation [g(ω) = g(0)(ω) + g(0)(ω) Σ⋆(ω) g(ω)], where

g(0)(ω) propagates a free nucleon. The information on nuclear

structure is included in the irreducible self-energy, which was

split into two contributions:

Σ⋆(r, r′;ω) = ΣMF (r, r′;ω) + Σ̃(r, r′;ω) . (3)

The term ΣMF (ω) includes both the nuclear mean field (MF)

and diagrams describing two-particle scattering outside the

model space, generated using a G-matrix resummation [24].

As a consequence, it acquires an energy dependence which

is induced by SRC among nucleons [23]. The second term,

Σ̃(ω), includes the LRC. In the present work, Σ̃(ω) is calcu-

lated in the so-called Faddeev random phase approximation

(FRPA) of Refs. [21, 25]. This includes diagrams for particle-

vibration coupling at all orders and with all possible vibration

modes, see Fig. 1, as well as low-energy 2p1h/2h1p configu-

rations. Particle-vibration couplings play an important role in

compressing the single-particle spectrum at the Fermi energy

to its experimental density. However, a complete configura-

tion mixing of states around the Fermi surface is still missing

and would require SM calculations.

Each spectroscopic amplitude ψA±1(r) appearing in Eq. (2)

has to be normalized to its respective SF as

Zα =

∫

dr |ψA±1α (r)|2 =
1

1 −
∂Σ⋆
α̂α̂
(ω)

∂ω

∣

∣

∣

∣

∣

∣

∣

∣

ω=±(EA±1α −E
A
0
)

, (4)

where Σ⋆
α̂α̂
(ω) ≡< ψ̂α|Σ

⋆(ω)|ψ̂α > is the matrix element of

the self-energy calculated for the overlap function itself but

normalized to unity (
∫

dr |ψ̂α(r)|
2 = 1). By inserting Eq. (3)

into (4), one distinguishes two contributions to the quenching

of SFs. For model spaces sufficiently large, all low-energy

physics is described by Σ̃(ω). Then, the derivative of ΣMF (ω)

accounts for the coupling to states outside the model space

and estimates the effects of SRC alone [33].

In general, the SC self-energy (3) is a functional of the one-

body propagator itself, Σ⋆ = Σ⋆[g]. Hence the FRPA equa-

tions for the self-energy and the Dyson equation have to be

solved iteratively. The mean-field part, ΣMF [g], was calcu-

lated exactly in terms of the fully fragmented propagator (2).

For the FRPA, this procedurewas simplified by employing the

Σ̃[gIPM] obtained in terms of a MF-like propagator

gIPM(r, r′;ω) =
∑

n /∈F

(φn(r))
∗ φn(r

′)

ω − εIMPn + iη
+
∑

k∈F

φk(r) (φk(r
′))∗

ω − εIMP
k
− iη

,

(5)

which is updated at each iteration to approximate Eq. (2) with

a limited number of poles. Eq. (5) defines a set of undressed

single-particle states that can be taken as a basis for SM ap-

plications. This feature will be used below to estimate the im-

portance of configuration mixing effects on the quenching of

spectroscopic factors. The present calculations employed the

N3LO interaction from chiral perturbation theory [26] with a

modification of the tensor monopoles to correct for missing

three-nucleon interactions [27].

Results.— The calculated single-particle spectral function

[S 56Ni(r,ω) =
1
π
|g(r = r′;ω)|2] is shown in Fig. 1 for the case

of neutron transfer on 56Ni. This picture puts in evidence the

quasiparticle and quasihole states associated with valence or-

bits in the 0p1 f shell. The corresponding SFs are reported

in Tab. I, including both protons and neutrons. The first col-

umn is obtained by including only the derivative of ΣMF (ω)

when calculating Eq. (4). Since N3LO is rather soft com-

pared to other realistic interactions the effect of SRC is rela-

tively small. From other models one could expect a quenching

up to about 10% [16], as confirmed by recent electron scatter-

ing experiments [14, 15, 28]. This difference would not affect

sensibly the conclusions below. The complete FRPA result for

SFs is given in the second column. For the transition between

the 56Ni and 57Ni ground states, our result agrees with knock-

C. Barbieri, PRL 103,202520 (2009)

3BF beyond the EoS

Shear viscosity with CBF

Benhar & Valli, PRL 99, 232501 (2007)
Benhar & Carbone, arxiv:0912.0129

PNS dynamical evolution with BHF

Burgio et al., arxiv:1106.2736

• Many-body modelers are aiming at complete descriptions!
• Consistent description of transport coefficients
• Response of nuclear & neutron matter
• Transport coefficients & dynamical evolution of NS 27 / 30
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Details!

Introduction

VNN
V3N

V3N

V3N

VNN

VNN

V3N

V3N

VNN

V3N

Required inputs:

1. consistent NN and 3N forces at N3LO in partial-wave-decomposed form

2. softened forces for judging approximations and pushing to heavier nuclei



Different regularization schemes

1. non-local regularization:

2. local regularization:

3. hybrid strategy: regularize long-range parts locally and 
short-range distance non-locally

Goal of regularization:
Separate long- from short-range physics

• different choices regulate short range physics in different ways
• important to explore various alternatives
• need to implement according regularizations in 3NF

VNN(r) ⇠
✓
1� exp


� rn

Rn
0

�◆

VNN(p, p
0
) ⇠ exp


�p2n + p02n

⇤

2n

�



Regularization schemes for 3NF

1. non-local regularization:

V3N(p, q, p
0, q0) ⇠ exp


�p2 + 3/4q2

⇤

2

�
exp


�p02 + 3/4q02

⇤

2

�

• multiplicative (no partial-wave mixing), trivial to apply
• calculated matrix elements up to N3LO can be used immediately

2. local regularization:

V3N(r12, r23, r13) ⇠
✓
1� exp


r212
R2

0

�◆n ✓
1� exp


r223
R2

0

�◆n ✓
1� exp


r213
R2

0

�◆n

• partial wave mixing, application of regulator non-trivial in partial-wave basis
• different possibilities to calculate 3NF partial wave matrix elements:

★ decompose 3N in coordinate space and then fourier transform
★ perform convolution integrals in momentum space partial wave basis



Regularization schemes for 3NF

1. non-local regularization:

V3N(p, q, p
0, q0) ⇠ exp


�p2 + 3/4q2

⇤

2

�
exp


�p02 + 3/4q02

⇤

2

�

• multiplicative (no partial-wave mixing), trivial to apply
• calculated matrix elements up to N3LO can be used immediately

2. local regularization:

V3N(r12, r23, r13) ⇠
✓
1� exp


r212
R2

0

�◆n ✓
1� exp


r223
R2

0

�◆n ✓
1� exp
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R2

0

�◆n

• partial wave mixing, application of regulator non-trivial in partial-wave basis
• different possibilities to calculate 3NF partial wave matrix elements:

★ decompose 3N in coordinate space and then fourier transform
★ perform convolution integrals in momentum space partial wave basis

Work in progress. Stay tuned!



VNN V3N

V3N

V3N

Equation of state: Many-body perturbation theory

E =

+ +

+ +

central quantity of interest: energy per particle E/N

• “hard” interactions require non-perturbative summation of diagrams

• with low-momentum interactions much more perturbative

• inclusion of 3N interaction contributions crucial!

+ . . .

Hartree-Fock

VNN

VNN

++ +
V3N

V3N

V3N

VNN

VNN

V3N

2nd-order

kinetic energy

3rd-order 
and beyond

H(�) = T + VNN(�) + V3N(�) + ...



Improved normal ordering of 3NF in infinite matter

V 3N = Tr�3Tr⌧3

Z
dk3

(2⇡)3
n⌧3
k3
A123V3N

• involves summation of one particle over occupied states in the Fermi sphere

• so far, an approximate normal ordering (P=0) has been developed specifically
  for individual 3NF topologies (so far up to N2LO)

KH and Schwenk
PRC 82, 014314 (2010)

Holt, Kaiser, Weise
PRC 81, 024002 (2010)

Carbone, Polls, Rios
PRC 90, 054322 (2014)

• following this approach, the treatment of more general 3NF becomes very 
tedious

Strategy: 
Develop general normal ordering based on partial-wave-decomposed 3NF

Drischler, KH, Schwenk, in preparation



Improved normal ordering of 3NF in infinite matter

V 3N =

✓
3

2

◆3

Tr�3Tr⌧3

Z
dq

(2⇡)3
n⌧3
(3~q+~P )/2

A123V3N

• generalize normal ordering to finite P:

n⌧
(3~q+~P )/2

�! �⌧ (q, P ) =
1

4⇡

Z
d⌦~P n⌧

(3~q+~P )/2

Drischler, KH, Schwenk, in preparation
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Improved normal ordering of 3NF in infinite matter
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Improved normal ordering of 3NF in infinite matter
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• makes it possible to treat also SRG-evolved 3NF in momentum space
KH, PRC 85, 021002 (2012)



Equation of state of symmetric nuclear matter,
nuclear saturation

Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k �) ⇤
�

r2 dr j0(kr) V (r) j0(k �r) = ⌅k |VL=0|k �⇧ =⇥ Vkk � matrix

Momentum units (� = c = 1): typical relative momentum
in large nucleus � 1 fm�1 � 200 MeV but . . .

Repulsive core =⇥ large high-k (� 2 fm�1) components
Dick Furnstahl RG in Nuclear Physics

l̄S

“Very soft potentials must be 
excluded because they do not 
give saturation; 
they give too much binding and 
too high density. In particular, a 
substantial tensor force is 
required.”
Hans Bethe (1971)

Overview NM Operators

What do (ordinary) nuclei look like?

Charge densities of magic
nuclei (mostly) shown
Proton density has to be
“unfolded” from ⇢

charge

(r),
which comes from elastic
electron scattering
Roughly constant interior
density with
R ⇡ (1.1–1.2 fm) · A1/3

Roughly constant surface
thickness

=) Like a liquid drop!

Dick Furnstahl TALENT: Nuclear forces
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Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k �) ⇤
�

r2 dr j0(kr) V (r) j0(k �r) = ⌅k |VL=0|k �⇧ =⇥ Vkk � matrix

Momentum units (� = c = 1): typical relative momentum
in large nucleus � 1 fm�1 � 200 MeV but . . .

Repulsive core =⇥ large high-k (� 2 fm�1) components
Dick Furnstahl RG in Nuclear Physics

l̄S

“Very soft potentials must be 
excluded because they do not 
give saturation; 
they give too much binding and 
too high density. In particular, a 
substantial tensor force is 
required.”
Hans Bethe (1971)

intermediate (cD) and short-range 
(cE) 3NF couplings fitted to few-body 
systems at different resolution scales: 
E3H = �8.482 MeV r4He = 1.464 fm

c1, c3, c4 terms cD term cE term

KH, Bogner, Furnstahl, Nogga, 
PRC(R) 83, 031301 (2011)
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Fitting the 3NF LECs at low resolution scales 



0.8 1.0 1.2 1.4 1.6
kF [fm−1]

−30

−25

−20

−15

−10

−5

0

En
er

gy
/n

uc
le

on
 [M

eV
]

Λ = 1.8 fm−1

Λ = 2.8 fm−1

Λ = 1.8 fm−1 NN only
Λ = 2.8 fm−1 NN only

Vlow k NN  from N3LO (500 MeV) 

3NF fit to E3H and r4He Λ3NF = 2.0 fm−1

3rd order pp+hh

NN + 3N

NN only

Reproduction of saturation point 
without readjusting parameters!

“Very soft potentials must be 
excluded because they do not 
give saturation; 
they give too much binding and 
too high density. In particular, a 
substantial tensor force is 
required.”
Hans Bethe (1971)
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PRC(R) 83, 031301 (2011)
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“Very soft potentials must be 
excluded because they do not 
give saturation; 
they give too much binding and 
too high density. In particular, a 
substantial tensor force is 
required.”
Hans Bethe (1971)

KH, Bogner, Furnstahl, Nogga, 
PRC(R) 83, 031301 (2011)

Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k �) ⇤
�

r2 dr j0(kr) V (r) j0(k �r) = ⌅k |VL=0|k �⇧ =⇥ Vkk � matrix

Momentum units (� = c = 1): typical relative momentum
in large nucleus � 1 fm�1 � 200 MeV but . . .

Repulsive core =⇥ large high-k (� 2 fm�1) components
Dick Furnstahl RG in Nuclear Physics
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Results for the neutron matter equation of state

c1, c3, c4 terms cD term cE term

only long-range 3NF 
contribute in leading order 

neutron matter is a unique 
system for chiral EFT:

pure neutron matter
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FIG. 7. (Color online) Energy per
particle E/N of neutron matter as a
function of density ρ at the Hartree-
Fock level (left) and including second-
order contributions (right). The results
are based on evolved N3LO NN poten-
tials and N2LO 3N forces. Theoretical
uncertainties are estimated by varying
the NN cutoff (lines) and the 3N cutoff
(band for fixed " = 2.0 fm−1).

where {· · ·} denote 6j symbols and PL(cos θ ) are Legendre
polynomials. Keeping only L = 0 in Eq. (34) corresponds
to the angle-averaging approximation for the Pauli-blocking
operator, but we keep all L ! 6 for Vlow k and L ! 4 for V 3N.

Our second-order results for the neutron matter energy
ENN+3N,eff = E

(1)
NN+3N,eff + E

(2)
NN+3N,eff are presented in Fig. 7.

The different contributions are listed in Table I. We observe
that the cutoff dependence is reduced when going from first to
second order. This is as expected based on the nuclear matter
results [7,8], but for neutron matter the cutoff dependence
is significantly weaker already at the Hartree-Fock level.
The cutoff dependence increases with density and is less
than 1 MeV per particle for the densities studied in Fig. 7
over the cutoff range 1.8 fm−1 ! " ! 2.8 fm−1 and
2.0 fm−1 ! "3NF ! 2.5 fm−1. This band sets the scale
for omitted short-range many-body contributions, and we
discuss the theoretical uncertainties in the long-range parts in
Sec. III D. The weak cutoff dependence also demonstrates that
the average momentum in the system (which is smaller than
the Fermi momentum because ⟨p2

i ⟩ = 3/5k2
F) is well below the

cutoff.
Moreover, we have found that self-energy corrections to

the neutron matter energy are practically negligible. The
second-order energy with $ = 0 is within 200 keV of the self-
consistent results shown in Fig. 7. In addition, the second-order
energy contributions are always below 1.3 MeV per particle
in Table I, except for the large cutoff " = 2.8 fm−1 cases.
The second-order contributions practically only improve the
cutoff independence of the results without changing the energy
significantly. Moreover, for the lower cutoffs, the Hartree-
Fock energies are already reliable. These findings combined
suggest that neutron matter is perturbative at nuclear densities.
Therefore, we are confident that the P = 0 approximation
for V 3N is reliable, when evaluating the small second-order
contributions, and that it is reasonable to neglect the residual
3N-3N diagram E

(2)
5 .

D. Sensitivity to ci uncertainties

Next, we study the sensitivity of the second-order energy
to uncertainties in the ci coefficients that determine the

long-range part of N2LO 3N forces. This provides an update for
chiral potentials of the results of Ref. [25]. The ci coefficients
relate πN, NN, and 3N interactions, and the determination
from πN scattering is, within errors, consistent with the
extraction from NN waves. Present constraints for c1 and
c3 are c1 = −0.9+0.2

−0.5 GeV−1 and c3 = −4.7+1.5
−1.0 GeV−1 [32].

We note that, at N3LO, there are contributions that shift the
ci [10], and may lead to c3 coefficients that are smaller in
magnitude. In this study, we vary ci only in 3N forces, because
of lack of N3LO NN potentials that explore these ci variations.
However, based on the universality of Vlow k [8,12] (starting
from chiral potentials with two different ci sets [15,16]), we
do not expect large differences from varying c1 and c3 in
NN interactions, where these variations are also absorbed by
higher-order contact interactions that have to be adjusted to
reproduce NN scattering.

In Fig. 8, we show that the theoretical uncertainties of
the neutron matter energy are dominated by the uncertainties
in the ci coefficients, in particular the c3 part, compared
to the uncertainties of the many-body calculation or of
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FIG. 8. (Color online) Theoretical uncertainties of the second-
order energy with "/"3NF = 2.0 fm−1 as a function of density due
to the uncertainties in the c1 and c3 coefficients of 3N forces.
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First application to isospin asymmetric nuclear matter

• uncertainty bands determined 
by set of 7 Hamitonians

Drischler, KH, Schwenk,
in preparation

x =
np

np + nn



Current and future directions

• derivation of systematic uncertainty estimates for many-body 
observables, order-by-order convergence studies

• benchmarks of different many-body frameworks based on a set of 
common Hamiltonians, from light nuclei to nuclear matter

• exploration of different fitting strategies, include bayesian analysis for 
statistical interpretation of uncertainties?

• role of regulators, clean separation of short- and long-range physics, 
naturalness of coupling constants, power counting schemes, inclusion of 
delta excitations

LENPIC


