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Full calculations (no cut in the

matrix elements and large cutoff)

Papakonstantinou and Roth, Phys. Lett. B 671, 356 (2009) Interaction

derived from
Papakonstantinou and Roth, Phys. Rev. C 81, 024317 (2010) Argonne V18

Gambacurta, Grasso, and Catara, Phys. Rev. C 81, 054312 (2010)

Phenomen.
Gambacurta, Grasso, and Catara, J. Phys. G 38, 035103 (2011) BSLSuR:LT

Gogny
interactions

Gambacurta, Grasso, and Catara, Phys. Rev. C 84, 034301 (2011)

Gambacurta, Grasso, De Donno, Co, and Catara, Phys. Rev. C 86
021304(R) (2012)



Problems difficult to cure, up to very recently:

» (Too) strong shift to lower energies with respect to the
RPA spectrum (even in those cases where RPA works
well)

Strong dependence on the cutoff (ultraviolet divergence
in the case of zero-range interactions)

In some cases (for some values of the cutoff): imaginary
solutions and/or states with positive energy and
negative norm




With the Gogny force (density-dependent

contact term in the construction of the residual
interaction) - 1°O
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Gambacurta, Grasso, et al., Phys. Rev. C 86, 021304 (R ) (2012)



The SRPA model
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Yannouleas, Phys. Rev. C 35, 1159 (1987)
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If the interaction does not depend on the density:

B,, = B,, =B ,,= 0 (when the QBA is used)
The beyond-RPA matrix elements for the matrix A are:

A = Aph p1p2hihy Antisymmetrizer
Coupling 1p1h _ T
with 2p2h (matrix = (HF| [“hap’ [H, a},a},an,an,
elements of the v [/
interaction: hppp, = x(h1, h2)Vh1PP1P26hh2 - Vhlhlplhgplh’
phhh)

Axp = Aplhlpzhz,Plhlpzh'

t Tt
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hhhh, phhp)

+ X (pl ’ pZ)Vhlhzh/lh’28p1p/1 8p2p’2
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SRPA with density-dependent forces (Skyrme or Gogny)

New rearrangement terms derived for the residual

interaction

where:
A"1 A“") B11 B“‘)
— - « ’Bz - ,
& (A21 412 ) ( Ba1 Bag )

Inspired by the variational derivation of SRPA equations by
da Providencia, Nucl. Phys. 61, 87 (1965) '

Gambacurta, Grasso, Catara, J. Phys. G: Nucl. and Part. Phys. 38, 035103 (2011)



Residual interaction. Rearrangement terms for SRPA matrix elements
when the interaction is density dependent

Some works in beyond-RPA frameworks:

- Shell model
Waroquier et al., Phys. Rep. 148, 249 (1987)

- Some matrix elements beyond standard RPA
(however the procedure does not allow one to obtain
the standard RPA rearrangement terms)

Adachi and Yoshida, Phys. Lett. B 81, 98 (1979)



Variational procedure to derive the SRPA equation:,

da Providencia Nucl. Phys. 61, 87 (1965)

) =e

) HF state

pa - 1 A : -
§=2 Coayan+ 5 Y Copmwta,a,anan.
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-The coefficients C are used as variational parameters (minimization of the

expectation value of the Hamiltonian)

-The coefficients C are assumed very small => expansion of the expectation
values of 1- and 2-body operators truncated at the second order in C




Expansion of the one-body density

around the HF density
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Mean value of the Hamiltonian in the

ground state:

(H) = (®|H|®) + Y _(Cpimi(p) + Cmidim(p))

T Z (é:mij anij (p) + émm’j Vijmn (p)) + F(2)

i<jm<n

Examples of RPA and beyond-RPA

matrices:
Sum of
4 52(H) B quadratic
mi, kl = A = 125
pq 5C* 8C o s terms




Expansion of the density-dependent

interaction around the HF density:

(p) ~ (,0( )) + Z 5Vaﬂy8 50up + 1 Z 82‘7aﬂy8 80ub800d
a ) a ) ab T 5 a cd
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00ap = 6,0 + 5,0(2)




Double counting (interaction adjusted at the

mean-field level) and instabilities.
Recent analyses:

« Papakonstantinou, Phys. Rev. C 90, 024305 (2014)*

« Tselyaev, Phys. Rev. C 88, 054301 (2013) (subtraction
method)

* Suggestion of using a correlated ground state. This has
been implemented only in the case of metallic clusters:
Gambacurta, Catara, Phys. Rev. B 81, 085418 (2010)




Subtraction method

- Tselyaev, Phys. Rev. C 75, 024306 (2007).
Applied first to models that include particle-vibration coupling

- Tselyaev, Phys. Rev. C 88, 054301 (2013) (for extensions
of the RPA model)

Main objective of the method: Eliminating double counting

What is developed in Tselyaev 2013:

- stability of extended RPA results (real solutions)
guaranteed
‘Though the problem of the convergence is not

generally resolved...., one can see that its use at least
improves the situation’




SRPA equations may be written as RPA-type

equations with energy dependent RPA matrices

Z Alg(w + Z’I7 = A22/)_1A2/1/ — Z Blg(w - Z’I’] + A22/)_1B2/1/
2,2/ 2,2/

Aq1/ By
* *
'Bll’ 'All’



Subtraction to eliminate double
counting

The used energy density functional ‘already contains a part of the
contributions of those complex configurations which are explicitly
included’ in SRPA: static contributions (the dynamic contributions
will lead to the formation of the spreading width of the resonances).

Static contributions should be eliminated. This is done by imposing
that the two matrices are equal at zero energy.

QSRPA (0) — QRPA
One can show that this is equivalent to impose the equality of the

static polarizability (related to the inverse energy-weighted moment
of the strength distribution) calculated in the two models



The energy dependent parts of the matrices are

Ei11/(w Z Aro(w +in — Agg) "t Agryr — Z Bia(w 4 in + Agg) "' Borys
2,2/ 2,2/

Fiy(w) =) Ap(w+in— Asx) "By — Y Bia(w+in+ Asy) " Ay
2,2/ 2,2/

Subtraction:

A7 (w) = A1y (w) — E11/(0)

B/ (w) = By (w) — Fi1/(0)



By following Tselayev 2013 and Shirmer and Angonoa, J.
Chem. Phys. 91, 1754 (1989) ->

It is possible to rewrite the equations (after subtraction) in a
non energy dependent SRPA form:

< A+ >, A12(Aza )" Aoy + 3, Bia(Age ) "1 Barr Az
‘A'F —

A21 A22’

< Bi1 + Y A12(A22) " B + Y, Bia(Aaa) "t Aa1r B
BF —

le BZ2’

S -> subtracted
F -> full scheme (inversion of the matrix A,,.)



A diagonal approximation in the calculation of the

corrective term will be also tested:
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Stability condition in RPA (Thouless

theorem)

A necessary condition for the HF state to minimize the expectation value
of the Hamiltonian is that the RPA stability matrix be positive semi-definite
(it can be shown that this leads to real eigenvalues)

Airr Bur
Stability RPA matrix .
Blll Alll

This does not imply that the SRPA stability matrix is also positive semi-
definite.

The theorem can be extended to SRPA either by using a correlated ground
state instead of HF (Papakonstaninou 2014) or by applying the subtraction
procedure (Tselyaev 2013)



APPLICATIONS
(Skyrme SGill)

Effect of the subtraction
Monopole as an illustration



Isoscalar monopole response. Effect of the subtraction on the

SRPA spectra. Full calculation
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Isoscalar monopole response. Effect of the subtraction on the

SRPA spectra. Diagonal approximation in the corrective term
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Full calculation versus diagonal approximation
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Plot of the diagonal part of the corrective term: it can be
viewed as a correction on the particle-hole excitation

energies. This provides the shift to higher energies with
respect to SRPA

TSI

SIS SS S

8 |
DCorr scheme
- B Fscheme -
N
6 AN - .
N N
N

Diagonal corrective term (MeV)

. N L
~ : N i

0 4 8 12 16 20 24 28 32 36 40
1p-1h configuration

Gambacurta, Grasso, Engel, in preparation



Different behavior for the low-lying states that have mostly

a multiparticle-multihole nature
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Cutoff dependence?
Robust predictions?



Robustness of the predictions.

Dependence on the cutoff?
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Comparison with RPA and
experimental results



To compute centroids and widths we will make
use of the moments of the strength function,

my, = / E*S(E)dE
0

where the strength function is

S(E) =) _[(n|Q|0)[*6(E, — E)
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Centroid energy:




Let us compare now with RPA. The F

scheme as an illustration. Monopole
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Quadrupole

Centroid and width RPA: 20.73 MeV, 2.42 MeV

_~30 Centroid and width F scheme: 20.21 MeV, 4.05 MeV
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Comparison with experiment.
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Quadrupole
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Low-lying states. Two-particle/two-hole

states
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Ratios with respect to RPA
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Energy Density Functional (EDF) models
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The mean-field approximation represents the leading order
of the perturbative many-body problem.

Total energy at first order

1 kz k1 1st order equation of
O ______ Q + state of matter
k,



What happens if one goes beyond the mean-field level

within the EDF framework?

2nd order for the
equation of state of
nuclear matter:

Commonly used
interactions
(Skyrme) are
adjusted at the
mean-field level.
Double counting
problems when
one uses them
beyond

Zero-range terms
in conventional
forces ->
ultraviolet

divergences when
one goes beyond

the mean field

Regularization
techniques

Is our problem

really perturbative
when

conventional
forces are used?

Power counting
analysis



Moghrabi, Grasso, Colo’, and Van Giai, PRL 105, 262501 (2010)

Equation of state of nuclear matter with a Skyrme-type
interaction

This second-order contribution diverges with a Skyrme-type
interaction




Asymptotic behavior: linear divergence (with respect to

the cutoff). The second-order correction is proportional

—11+4+2In2 A 2kF O(k%)

105 Okr 45A A2

Coherent with the Lee-Yang expression (ground state

energy of a low-density Fermi gas). Expansion as a power
series in the scattering length a:

N  2m |

E RHA(3 2 4
— 2 b2 ake +
( @EF T 35

e 2 a1 - 21n2)(akF)2)

Lee and Yang, Phys. Rev. 105, 1119 (1957)



How the equation of state looks like:
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FIG. 4 (color online). (a) Second-order-corrected equations of
state compared with the reference equation of state (SkP at
mean-field level). (b) Extreme case of A = 350 fm .



Recently done

(e

—— Mean-field SLy5-EoS
— — Refitted second-order EoS
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... to finite nuclei with beyond-
mean-field models. First attempt:

Brenna, Colo, Roca-Maza, PRC
90, 044316 (2014)




Summary

- Implementation of the SRPA model by a subtraction

procedure:

- Double counting

- Stability condition (real solutions)

- We have verified that results are stable with respect
to the cutoff.

- Many systematic applications to low-lying and giant
resonances (physical width) are foreseen

- Interaction in beyond mean field models (second
order in matter). Parameters are refitted



