Nuclear spectroscopy with fast exotic beams

Alexandra Gade Professor of Physics NSCL and Michigan State University

... or puzzles in the region around N=28 from ⁴⁸Ca over ⁴⁶Ar to ⁴²Si

Alexandra Gade Professor of Physics NSCL and Michigan State University

Outline

Why is N=28 still interesting in neutronrich nuclei

⁴⁸ Ca	Doubly-magic
⁴⁷ K	
⁴⁶ Ar	Huh?
⁴⁵ Cl	
⁴⁴ S	Collective, shape coexistence proven
⁴³ P	
⁴² Si	Collective
⁴⁰ Mg	Anybody?

S NSCL

National Science Foundation Michigan State University

- Region of rapid shell evolution
- First shell closure due to the spinorbit force
- Collectivity of ⁴⁶Ar is not described by shell model – puzzling deviation
- For me personally ⁴⁶Ar is a key nucleus on the path from doublymagic ⁴⁸Ca to deformed ⁴²Si that theory has to get right if the details of shell evolution are claimed to be understood and implemented in shell model

The breakdown of N=28 from ⁴⁸Ca to ⁴²Si

- Neutron $f_{7/2}$ fully filled (as compared to ³⁴Si) and that reduces the $d_{3/2}$ - $d_{5/2}$ SO splitting by almost 2 MeV (consistent with tensor force: $d_{3/2}$ - $f_{7/2}$ attractive and $d_{5/2}$ - $f_{7/2}$ repulsive)
- N=28 shell gap is reduced by 1 MeV as protons are removed from ⁴⁸Ca → ⁴²Si
- Particle-hole excitation of sd shell protons and fp shell neutrons to unfilled orbitals with Δl=2 favor quadrupole collectivity

B. Bastin et al., PRL 99, 022503 (2007)

National Science Foundation Michigan State University

A brief history –Collectivity of ⁴⁶Ar

- Reported for the first time in 1974 from an ⁴⁸Ca(⁶Li,⁸B) experiment
- 1996: B(E2)_{up}=196(39) e²fm⁴ (NSCL Coulex)
- 2003: B(E2)_{up}=218(31) e²fm⁴ (NSCL Coulex)
- Unpublished: Lineshape lifetime measurement (Stuchbery) – agrees with Coulex B(E2)
- Shell model: factor of 2.5 higher than the above
- DFT (DD-PCI): B(E2)_{up}= 200 e²fm⁴
- 2010: B(E2)_{up}=570⁺³³⁵-160 e²fm⁴ (INFN lifetime)
- Shell model claims victory ... or agreement
- 2012: ⁴⁷Ar (2⁺ x p_{3/2}) multiplet B(E2) consistent with low B(E2): $\Sigma_J B(E2; 3/2^- \rightarrow J) = B(E2\uparrow)_{46}_{Ar}$
- 2014: B(E2)_{up}=271⁺²²-26 e²fm⁴ (GANIL Coulex)

S. Calinescu et al., Acta Phys. Pol. B 454, 199 (2014)

Intermediate-energy Coulomb excitation Example: ⁴⁶Ar + ¹⁹⁷Au

A. Gade et al., Phys. Rev. C 68, 014302 (2003)

National Science Foundation Michigan State University

The ⁴⁶Ar lifetime measurement

D. Mengoni et al., PRC 82, 024308 (2010)

ratios of peaks stemming from emission before or after a degrader

National Science Foundation Michigan State University Life is good?

A. Gade, 5/13/2015, Slide 8

46

44

Mass number

Not so fast ... Coulomb excitation at GANIL S. Calinescu et al., Acta Phys. Pol B45, 199 (2014)

- Intermediate-energy Coulomb excitation of ⁴⁶Ar measured relative to ⁴⁴Ca
- And again consistent with a lower B(E2)_{up}=271⁺²²-26 e²fm⁴
- Three (3) Coulomb excitation measurements are consistent with each other and lower than the lifetime measurement

STUDY OF THE NEUTRON-RICH ISOTOPE ⁴⁶Ar THROUGH INTERMEDIATE ENERGY COULOMB EXCITATION*

S. CALINESCU^{a,i}, L. CÁCERES^b, S. GRÉVY^c, O. SORLIN^b, D. SOHLER^d
M. STANOIU^a, F. NEGOITA^a, E. CLÉMENT^b, R. ASTABATYAN^g, C. BORCEA^a
R. BORCEA^a, M. BOWRY^e, W. CATFORD^e, Z. DOMBRADI^d, S. FRANCHOO^f
R. GARCIA^k, R. GILLIBERT^j, H. GUERIN^c, J.C. THOMAS^b, I. KUTI^d
S. LUKYANOV^g, A. LEPAILLEUR^b, V. MASLOV^g, P. MORFOUACE^f, J. MRAZEK^h
M. NIIKURA^g, L. PERROT^g, Z. PODOLYAK^e, C. PETRONE^{a,i}
Y. PENIONZHKEVICH^g, T. ROGER^b, F. ROTARU^a, I. STEFAN^f, Z. VAJTA^d

E. Wilson^e

National Science Foundation Michigan State University

Coulomb excitation of neutron-rich ^{47,48}Ar

- B(E2) values at ⁴⁶Ar are controversial
- SM does not reproduce the lower of the two values
- Beyond N=28, only excitation energies are known
- Goal: Assess collectivity in ^{47,48}Ar 80 ⁴⁸Ar ⁴⁷Ar 70 v/c=0.423 v/c=0.416 400 Counts/11 keV 60 50 1227(6) keV 1040(7) keV 40 200 30 20 10 600 1000 1400 1800 600 1400 2200 Energy (keV)

R. Winkler et al., PRL 108, 182501 (2012)

Time of flight (arb. units)

- Intermediate-energy Coulex
 - PID with the S800 spectrograph
 - Gamma-ray spectroscopy with SeGA
 - Collectivity in Ar isotopes beyond N=28

Quadrupole collectivity in Ar isotopes

- B(E2) value for ⁴⁸Ar determined for the first time from Coulex
- Agrees with SM within 2σ
- Both effective interactions fail to describe the low B(E2) at ⁴⁶Ar (if it turns out to be correct)
- N/Z-dependent effective charges are not a venue to lower the SM B(E2) at N=28
- ⁴⁷Ar ΣB(E2;3/2⁻ -> J) is low, as one may expect if ⁴⁶Ar has little collectivity

R. Winkler et al., PRL 108, 182501 (2012)

National Science Foundation Michigan State University

SDPF-U: Nowacki and Poves, PRC 79, 014310 (2009) EPQQM: K. Kaneko et al., PRC 83, 014320 (2011)

Spectroscopy of neutron-rich Ar nuclei

- In the experiment, only the 5/2⁻ -> 3/2⁻ decay is observed
- The B(E2) values for the 7/2and 3/2- states are generous upper limits
- Both shell model effective interactions massively overpredict the low-lying quadrupole collectivity of ⁴⁷Ar
- While the two effective interactions give a similar description of the even-even nuclei, the odd-A nucleus ⁴⁷Ar emerges as a discriminator

• Shell structure at *N=28,29* may not be understood in Ar

National Science Foundation Michigan State University

SDPF-U: Nowacki and Poves, PRC 79, 014310 (2009) EPQQM: K. Kaneko et al., PRC 83, 014320 (2011)

A. Gade, 5/13/2015, Slide 12

R. Winkler *et al.*, PRL 108, 182501 (2012)

Other observables – charge radii

S NSCL

National Science Foundation Michigan State University

A. Gade, 5/13/2015, Slide 13

Received August 11, 1970

Other observables – mass

Z. Meisel et al., PRL 114, 022501 (2015)

Masses can be deduced from the simultaneous measurement of an ion's time-of-flight, charge, and magnetic rigidity thorough a magnetic system of a known flight path

B. A. Brown, PRL 111, 162502 (2013)

$$\begin{split} D_n(N) &= (-1)^{N+1} \big[S_n(Z, N+1) - S_n(Z, N) \big] \\ &= (-1)^N \big[2 \mathrm{BE}(Z, N) - \mathrm{BE}(Z, N-1) - \mathrm{BE}(Z, N+1) \big] \end{split}$$

 D_n shows a clear signature of a shell closure, in agreement with shell model $\rightarrow N=28$ gap well described by theory

How does ⁴⁶Ar get collective? ... at least one view of it

PHYSICAL REVIEW C 91, 014309 (2015)

Low-lying 2^+ states generated by *pn*-quadrupole correlation and N = 28 shell quenching

Shuichiro Ebata1 and Masaaki Kimura2

¹Meme Media Laboratory, Hokkaido University, Sapporo, 060-0813, Japan ²Department of Physics, Hokkaido University, Sapporo, 060-0810, Japan (Received 13 March 2014; revised manuscript received 12 November 2014; published 13 January 2015)

The quadrupole vibrational modes of neutron-rich N = 28 isotones (⁴⁸Ca, ⁴⁶Ar, ⁴⁴S, and ⁴²Si) are investigated by using the canonical-basis time-dependent Hartree–Fock–Bogoliubov theory with several choice of energy density functionals, including nuclear pairing correlation. It is found that the quenching of the N = 28 shell gap and the proton holes in the *sd* shell trigger quadrupole correlation and increase the collectivity of the low-lying 2⁺ state in ⁴⁶Ar. It is also found that the pairing correlation plays an important role to increase the collectivity. We also demonstrate that the same mechanism to enhance the low-lying collectivity applies to other N = 28isotones ⁴⁴S and ⁴²Si, and it generates a couple of low-lying 2⁺ states which can be associated with the observed 2⁺ states.

Part of their conclusion:

Here, we also comment on the comparison between the present result and experimental data. The lifetime measurement [8] reports a value about three times larger than $B(E2) \sim 570 e^2 \text{ fm}^4$ than that reported by Coulomb-excitation experiments [5,6], $B(E2) \sim 196 (218) e^2 \text{ fm}^4$. In all cases we tested, the low-lying strengths are less than 200 $e^2 \text{ fm}^4$, and hence supports the smaller value of B(E2) reported by Coulomb excitation.

National Science Foundation Michigan State University

ℓ=3 and ℓ=4 in ⁴⁹Ca and ⁴⁷Ar from neutron-adding transfer

- ¹²C(⁴⁸Ca,⁴⁹Ca+γ) and
 ¹²C(⁴⁶Ar,⁴⁷Ar+γ) at ~60 MeV/u to populate high orbital-angular-momentum neutron single-particle states (momentum matching at high beam energies and picking up a deeply bound neutron!)
- Two-body reaction, finite-range DWBA, distorting interactions for ¹²C+projectile (entrance) and ¹¹C+pickup residue (exit) channels via double-folding with an effective NN interaction, Gaussian density (r=2.32fm) for C and SkX densities for the projectile-like systems

National Science Foundation Michigan State University

- S. McDaniel et al., Phys. Rev. C 85, 014610 (2012)
- ⁿ A. Gade et al., Phys. Rev. C 83, 054324 (2011)
 - A. Gade et al., Phys. Rev. C 76, 061302(R) (2007)

ℓ=3 and ℓ=4 in ⁴⁹Ca

A. Gade, J. A. Tostevin et al., to be published

⁴⁹Ca from (*d*,*p*) transfer (1994)

- 3.99 and 4.02 MeV states cannot be resolved
- Normalization of DWBA?

Y. Uozumi *et al.*, NPA 576, 123 (1994)

Fig. 1a. Proton spectrum for the ⁴⁸Ca(\vec{d} , p)⁴⁹Ca reaction by using 56 MeV deuterons with spin-up orientation taken at $\theta_{Lab} = 11^{\circ}$. The number of protons in every 4 keV energy bin is plotted versus the excitation energy of ⁴⁹Ca. Typical single-particle states are labeled with the excitation energies and the spin-parities. Impurity peaks are identified by shading.

ℓ=3 neutron-rich ⁴⁷Ar nuclei

0.25 Measured cross sections compared to 0.2 Expt.47Ar 15/2calculated cross sections wit shell-model 0.15 spectroscopic factors 0.1 7/2-**1**5/2-0.05 5/2-Y. Utsuno et al., PRC 86, 051301(R) 0 F. Nowacki et al., PRC 79, 014310 (2009) 0.4 SDPF-U 5/2-K. Kaneko et al., PRC 83, 014320 (2011) Partial cross sections (mb) 0.3 5/2-7/2-0.2 Sn=3.550(80) MeV 0.1 3438 DEFENSION DEFENSION DEFENSION 1/2-5/2-7/2-0 5/2-0.4 SDPF-MU 27615/2-5/2-0.3 5/2-7/2-7/2-0.2 530 744 0.1 1/2-5/2-3438 7/2-0 515 5/2-EPQQM 0.4 1230 744 8 5/2-0.3 Ń 0.2 7/2-3/2-5/2-0.1 7 5/2-0 47 1/2-National Science Foundatio 500 Michigan State University 1000 1500 2000 2500 3000 3500

A. Gade, J. A. Tostevin et al., to be published

Energy (keV)

Si history sorry, experiment only

- M. Lewitowicz et al., Z.Phys. A335, 117 (1990)
 Discovery of ⁴²Si
- R.W. Ibbotson et al., Phys. Rev. Lett. 80, 2081 (1998) – B(E2) values in ³²⁻³⁸Si
- S. Grevy et al., Phys.Lett. B 594, 252 (2004)
 Beta-decay half-life
- J. Fridmann et al., Nature 435, 922 (2005) and Phys. Rev. C 74, 034313 (2006) – Small ⁴⁴S-2p knockout cross section
- C.M. Campbell et al., Phys. Rev. Lett. 97, 112501 (2006) – Excited states in ⁴⁰Si
- B. Jurado et al,. Phys. Lett. B 649, 43 (2007)
 TOF mass measurement
- C.M. Campbell et al., Phys. Lett. B 652, 169 (2007) – deformation parameters for ³⁶⁻⁴⁰Si
- B. Bastin et al., Phys. Rev. Lett. 99, 022503 (2007) – First observation of the 2⁺₁ in ⁴²Si
- S. Takeuchi et al., arXiv:1207.6191 (2012)
 Level scheme of ⁴²Si

Coulomb excitation of ³⁴⁻⁴²Si

Time of flight (arb. units)

- Intermediate-energy Coulomb excitation of ³⁴⁻⁴²Si on Au and Bi targets (⁴²Si)
- Particle rates between several thousand pps and 1pps in the S800 focal plane
- CAESAR used for in-beam γ-ray spectroscopy in coincidence with particle ID in the S800 spectrograph

S NSCL A. Ratkiewicz et al., to be published

 Use CAESAR instead of SeGA and trade efficiency for resolution

Gamma-ray spectra of ³⁴⁻⁴²Si

A. Ratkiewicz et al., to be published

Counts/(32 keV)

Preliminary B(E2) values for ³⁴⁻⁴²Si

A. Ratkiewicz et al., to be published

- The new SDPF-MU effective interaction describes the trend well if the tensor contributions are included
- ⁴⁰Si is a key discriminator
- Underestimated B(E2) values at N=22 and 24 is attributed to the absence of sd shell proton intruders in the model spaces

SDPF-MU from:

Shape transitions in exotic Si and S isotopes and tensor-force-driven Jahn-Teller effect

Yutaka Utsuno,^{1,2} Takaharu Otsuka,^{3,2,4} B. Alex Brown,^{4,5} Michio Honma,⁶ Takahiro Mizusaki,⁷ and Noritaka Shimizu²

Still to come ...

A. Ratkiewicz et al., to be published

- Evaluate the proton and neutron contributions to collectivity from proton scattering data (out to ⁴⁰Si)
- Extract and analyze the B(E2) values for the second 2⁺ states in ³⁴Si and ³⁸Si

Shell evolution in Si toward *N*=28 largely from collective observables

S. Takeuchi et al., PRL 109, 182501 (2012)

Single-particle degree of freedom: Onenucleon knockout reactions

S. R. Stroberg et al., PRC 90, 034301 (2014)

Shell-model effective interactions used

PHYSICAL REVIEW C 79, 014310 (2009)

New effective interaction for $0\hbar\omega$ shell-model calculations in the *sd-pf* valence space

E. Nowacki¹ and A. Poves²

¹IPHC, IN2P3-CNRS et Université Louis Pasteur, F-67037 Strasbourg, France ²Departamento de Física Teórica e IFT-UAM/CSIC, Universidad Autónoma de Madrid, E-28049 Madrid, Spain (Received 25 September 2008; published 22 January 2009)

The neutron-rich isotopes with $Z \leq 20$, in particular those with neutron numbers around N = 28, have been the focus of a lot experimental and theoretical scrutiny during the past few years. Shell-model calculations using the effective interaction SDPF-NR were able to predict or to explain most of the properties featured by these nuclei. Prominent among them is the disappearance of the N = 28 shell closure for $Z \leq 16$. We have incorporated into SDPF-NR some modifications, either on purely theoretical grounds or guided by new experimental information. The proposed interaction SDPF-U offers enhanced reliability with respect to the earlier version.

SDPF-U

PHYSICAL REVIEW C 86, 051301(R) (2012)

SDPF-MU

National Science Foundation Michigan State University

Shape transitions in exotic Si and S isotopes and tensor-force-driven Jahn-Teller effect

Yutaka Utsuno,^{1,2} Takaharu Otsuka,^{2,3,4,5} B. Alex Brown,^{4,5} Michio Honma,⁶ Takahiro Mizusaki,⁷ and Noritaka Shimizu² ¹Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan ²Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan ³Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan ⁴National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ⁵Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA ⁶Center for Mathematical Sciences, University of Aizu, Ikki-machi, Aizu-Wakamatsu, Fukushima 965-8580, Japan ⁷Institute for Natural Sciences, Senshu University, Tokyo 101-8425, Japan (Received 23 August 2012; published 8 November 2012)

We show how shape transitions in the neutron-rich exotic Si and S isotopes occur in terms of shell-model calculations with a newly constructed Hamiltonian based on V_{MU} interaction. We first compare the calculated spectroscopic-strength distributions for the proton $0d_{5/2,3/2}$ and $1s_{1/2}$ orbitals with results extracted from a 48 Ca(e, e'p) experiment to show the importance of the tensor-force component of the Hamiltonian. Detailed calculations for the excitation energies, B(E2), and two-neutron separation energies for the Si and S isotopes show excellent agreement with experimental data. The potential-energy surface exhibits rapid shape transitions along the isotopic chains towards N = 28 that are different for Si and S. We explain the results in terms of an intuitive picture by involving a Jahn-Teller-type effect that is sensitive to the tensor-force-driven shell evolution. The closed subshell nucleus ⁴²Si is a particularly good example of how the tensor-force-driven Jahn-Teller mechanism leads to a strong oblate rather than a spherical shape.

First observable: Inclusive cross sections to all bound states

- Measured: Cross section to all bound states
- Calculated: Eikonal reaction theory (J. A. Tostevin) and shell-model spectroscopic factors for the given effective interaction [consistently following the prescription of PRC 77, 044306 (2008)]
- The calculations are scaled by the asymmetry dependent reduction factor from PRC 77, 044306 (2008)
- Total strength to bound states well described by shell model

S. R. Stroberg et al., PRC 90, 034301 (2014)

National Science Foundation Michigan State University

Shell evolution – the neutron perspective ... and the complications

Interesting:

- What is the evolution of the $f_{7/2} p_{3/2}$ gap
- What do we learn from the cross shell excitations (positive-parity states)

- ³⁵Si The measured ground state momentum distribution contains a d_{3/2} component due to the 3/2⁺ isomer
- ³⁷Si The 3/2⁻ state is a ns isomer. The 7/2⁻ state has not been observed yet. It will be an isomer, and so look like the ground state
- ³⁹Si The 3/2⁻ has not been observed yet (will be near the ground state or maybe is the ground state – large uncertainty), the 7/2⁻ is a ns isomer. No1/2⁺ state known

S. R. Stroberg et al., PRC 90, 034301 (2014)

The evolution of the 7/2⁻ - 3/2⁻ gap and the tensor force

S. R. Stroberg et al., PRC 91, 041302(R) (2015)

National Science Foundation Michigan State University

Cross shell excitations from positive parity states

S. R. Stroberg et al., PRC 91, 041302(R) (2015)

- SDPF-U and SDPF-MU describe the spectroscopy in the region well
- Both have similar sd and fp monopoles and are successful in reproducing the spectroscopy of the region
- More attractive SDPF-U crossshell monopoles overbind the neutron *sd* orbits as neutrons are added to the *fp* shell, leading to the observed trend.

3N in cross-shell T=1 channel

S. R. Stroberg et al., PRC 91, 041302(R) (2015)

• **SDPF-U:** due to insufficient experimental data, the cross-shell part of the interaction was left as essentially the two-body *G* matrix.

- **SDPF-MU:** generated from the schematic potential V_{MU} which includes approximately through fits to data the repulsive contribution of 3N forces to the effective T = 1 two-body interaction
- This same repulsive T = 1 effect has been shown to be robust consequence of the Fujita-Miyazawa process which is crucial in reproducing the oxygen dripline

Take away

- All might not be well at N=28 (⁴⁸Ca -> ⁴²Si) in neutron-rich nuclei, the text book example of shell evolution – maybe some missing piece in the puzzle of shell evolution?
- We experimenters can measure many more things than "just" energies and electromagnetic transition strength – think about the use of cross sections, please!
- That gets me to something important the interface of nuclear structure and reactions: Huge opportunities to connect to experiment!
- Tell us what quantities would be important to constrain your models, we often can find ways to get there experimentally!

Thank you!

