RECENT PROGRESS IN THE GAMOW SHELL MODEL

Y. Jaganathen

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf

(Figure modified from Forssén et al., Phys. Scripta T 152, 014022 (2013))

INTRODUCTION			
000	000000	00000000000	000

OPEN QUANTUM SYSTEMS (OQSS): WHAT ARE THEY?

 $\rightarrow\,$ Quantum systems coupled to the environment of scattering states and decay channels.

- Examples of OQSs in many domains of physics: hadrons, nuclei, atoms, molecules, quantum dots, microwave cavities.
- Exotic phenomena in OQSs: superradiance phenomena, spontaneous two-proton radioactivity, near-threshold clustering phenomena...
- General properties of OQSs (resonances, halos, exceptional points) are common to all mesoscopic systems.

INTRODUCTION			
000	0000000	000000000000	000

DESCRIPTION OF NUCLEAR OQSS

 \rightarrow Unified description of nuclear structure and reactions.

Nuclear Shell Model (1949):

- Applied successfully to the description of low-lying states in stable nuclei (bound state approximation).
- Fails to describe unstable nuclei.

Reaction theory:

- Unable to include the underlying structure of the target and the projectile nuclei microscopically.
 - Reconciliation of SM with reaction theory by Feshbach (1958-1962), Fano (1961), Mahaux and Weidenmüller (1969) with the projection operator formalism ⇒ Continuum Shell Model.
 - A different approach: Gamow Shell Model (GSM), the SM for OQS in the complex energy plane.
- → Reconciliation of GSM with reaction theory using the coupled-channel formalism: GSM-CC.

Formalism ••••••• Applications 00000000000000 Outlook 000

APPLICATIONOUTLOOK

Formalism 0000000 Applications 000000000000000 Outlook 000

FORMALISM

Picture from http://arxiv.org/abs/quant-ph/0005024

000		

Formalism 0000000 Applications 000000000000000 Outlook 000

FORMALISM

- \rightarrow GSM: quasi-stationary open quantum system extension of the SM.
- Gamow states: discrete solutions of the quasi-stationary Schrödinger equation that are regular at the origin and with outgoing boundary conditions.

G. Gamow, Z. Physik 51, 204 (1928)

$$\frac{\partial^2 u_l(k,r)}{\partial r^2} = \left(\frac{l(l+1)}{r^2} + \frac{2m}{\hbar^2}V(r) - k^2\right)u_l(k,r)$$
$$E = \frac{\hbar^2 k^2}{2m} \qquad u_l(k,r) \sim_{r\sim 0} C_0(k)r^{l+1}$$

$$\begin{aligned} u_l(k,r) &\underset{r \to \infty}{\sim} C_+(k) H_{l,\eta}^+(kr) + C_-(k) H_{l,\eta}^-(kr) \\ u_l(k,r) &\underset{r \to \infty}{\sim} C_+(k) H_{l,\eta}^+(kr) &\Leftarrow \text{ outgoing solution} \end{aligned}$$

• Complex eigenenergies $E_n = e_n - i\Gamma_n/2$ corresponding to poles of the S-matrix:

$$k_n = \sqrt{\frac{2\mu E_n}{\hbar^2}} = \kappa_n - i\gamma_n.$$

- Rigged Hilbert space (RHS): construction designed to link the distribution and square-integrable aspects of functional analysis (Gel'fand, Vilenkin et al. (1964), Maurin (1968)).
- Rigorous framework for quantum mechanics (Böhm (1964), Roberts (1966), Antoine (1969) and Melsheimer (1974)).
- Unified formalism for bound states, resonances and scattering states.
- RHS inner product:

$$\langle \tilde{u}_n | u_n \rangle = \int_0^\infty dr \, \tilde{u}_n^*(r) u_n(r).$$

INTRODUCTION	Formalism	Applications	Outlook
			000
Formalism			
→ Berggren comple	eteness relation:	Normalization in practice:	
$\sum_{i=1}^{n} u_i(k_n)\rangle \langle \tilde{u}_i(k_n)\rangle$	$ u_{l}(k) + \int_{L^{+}} dk u_{l}(k)\rangle \langle \tilde{u}_{l}(k) = \hat{\mathbb{1}}.$	• Scattering states:	

T. Berggren, Nucl. Phys. A 109, 265 (1968)

$$C_+(k)C_-(k)=\frac{1}{2\pi}.$$

(holds also with Coulomb)

Resonant states:

 $C_{-}(k)=0.$

- Resonances:
 - → Exterior complex-scaling: $\hat{U}_{a}(\theta)\chi(r) = \chi(r_{a} + |r - r_{a}|e^{i\theta})$

if $|r| > r_a$.

B. Gyarmati and T. Vertse (1971), B. Simon (1979)

- Differentiability: $\mathcal{J}^+(k) = 0$.
- The RHS inner product gives $C_0(k)$.

	Formalism		
000	0000000	000000000000	000

THE GAMOW SHELL MODEL

→ Gamow Shell Model:

- Intrinsic nucleon-core coordinates of the Cluster-Orbital Shell Model.
 Y. Suzuki et al., Phys. Rev. C 38, 410 (1988)
- SM Hamiltonian:

$$\hat{H} = \hat{H}_c + \sum_{i=1}^{N_{val}} \hat{t}_i + \sum_{i< j}^{N_{val}} \hat{V}_{ij}.$$

• N-body basis of Slater determinants:

$$\sum_{n}\left|\Psi_{n}\right\rangle \left\langle \Psi_{n}\right|\approx\widehat{\mathbb{1}}$$

from the 1-body Berggren basis.

- Hermitian Hamiltonian but complex-symmetric matrix A = A^T.
 - \rightarrow Davidson diagonalization.
- Eigenenergies: $\tilde{E}_n = E_n + i\Gamma_n 2$.

• Overlap method to identify *N*-body resonances.

 $\big\langle \Psi_n^{(\text{pole})} \big| \Psi_n^{(\text{full})} \big\rangle \approx 70\% - 90\%$

- Schematic interactions: proof of applicability of GSM.
- Spectroscopy of stable and unstable nuclei.

	Formalism		
000	000000	00000000000	000

Formalism

- \rightarrow Unification of nuclear structure and reactions based on GSM.
- Coupled-channel (CC) formalism.
- Channel: $|r, c\rangle = |r\rangle \otimes |c_{\text{proj}}\rangle \otimes |c_{\text{targ}}\rangle$.

• Target:

- bound state or resonance.
 - → Resonant channel.
- scattering state.
 - → Nonresonant channel.
- Fully antisymmetrized calculation.

$$\oint_{c} \int_{0}^{\infty} dr \, r^{2} (H_{c',c}(r',r) - E \, N_{c',c}(r',r)) \frac{u_{c}(r)}{r} = 0.$$

$$\begin{split} & H_{c',c}(r',r) = \langle r',c'|\hat{H}|r,c\rangle, \ N_{c',c}(r',r) = \langle r',c'|r,c\rangle \\ & \rightarrow \text{ Direct integration method (Bulirsch-Stoer).} \end{split}$$

Orthogonalization: $\langle r', c' | r, c \rangle = _o \langle r', c' | \hat{O} | r, c \rangle_o$, Moore-Penrose pseudo inverse, equivalent potential method, ...

Applications •0000000000000 Outlook 000

INTRODUCTION

2 FORMALISM

3 APPLICATIONS

OUTLOOK

	FORMALISM	Applications	Outlook
		00000000000	
PROTON AND	NEUTRON RADIAT	IVE CAPTURE REACTI	ONS

- \rightarrow Extension of GSM-CC to (p, γ) and (n, γ) reactions.
- Big Bang nucleosynthesis, (H)CNO cycles, solar neutrinos, pp chains...

• Cross section:

$$\sigma = f\left(\langle \Psi_f(J_f) || \hat{O}^L || \Psi_i(J_i, c_e) \rangle\right).$$

Method:

$$\begin{split} \langle \Psi_f || \hat{O}^L || \Psi_i \rangle &= \langle \Psi_f || \hat{O}^L || \Psi_i \rangle_{\mathsf{nas}} \\ &+ \langle \Psi_f || \hat{O}^L_{\mathsf{c}} || \Psi_i \rangle^{\mathsf{HO}}_{\mathsf{c}} - \langle \Psi_f || \hat{O}^L_{\mathsf{c}} || \Psi_i \rangle^{\mathsf{HO}}_{\mathsf{na}} \end{split}$$

- Important quantities:

$$S_{p/n} = E_0^{(A)} [\text{GSM}] - E_0^{(A+1)} [\text{GSM-CC}].$$

K. Fossez, PhD. thesis (2014) K. Fossez et al., Phys. Rev. C 91, 034609 (2015)

Formalism

Applications 000000000000000

PROTON AND NEUTRON RADIATIVE CAPTURE REACTIONS

The ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B}$ reaction.

- Study of mirror reactions.
- $\hat{\mathcal{A}}(\langle \Psi_f(J_f) \| \hat{O}^L \| \Psi_i(J_i, c_e) \rangle).$
- Role of the long wave length approximation.
- Corrective factors in $\tilde{V}_{c,c'} = c(J^{\pi})V_{c,c'}$ with $c(J^{\pi}) < 5\%$.
- \rightarrow Nonresonant channels missing.

		Applications	Outlook
000	0000000	00000000000	000

NUCLEON TRANSFER REACTIONS

 \rightarrow Extension of GSM-CC to (d, p) and (d, n) reactions.

- Probe of the single-particle structure.
- Many-body projectile.
- Channels definition: $|R^{CM}, c\rangle = |R^{CM}\rangle \otimes |c_{proj}\rangle \otimes |c_{targ}\rangle$ with (GSM):

$$|c_{\text{proj}}\rangle = |J_c^{\text{CM}}(L_c^{\text{CM}}, S_c^{\text{CM}})\rangle_{\text{proj}}.$$

• Momentum space expansion: $\{|R_{CM}, c_{proj}\}\} \Rightarrow \{|K_{CM}, c_{proj}\}\}.$ Naive approach: Direct expansion in the many-body Berggren basis.

$$|\mathcal{K}_{CM}, c_{\text{proj}}\rangle \approx \sum_{i} c_{i} |\text{SD}_{i}\rangle$$
$$\mathcal{K}_{CM}|\mathcal{K}_{CM}'\rangle \stackrel{?}{=} \delta(\mathcal{K}_{CM} - \mathcal{K}_{CM}')$$

A. Mercenne, PhD. thesis (2013 – 2016) N. Michel, private communication

but drawbacks:

- Contours discretization and truncations:
- Normalization cannot be tested accurately.
- Solution: focus on the short-range part of \hat{H} : $|K_{CM}, c_{proj}\rangle^{HO} = \sum_{N_{CM}} U_{N_{CM}, c_{proj}}^{HO} (K_{CM}) |N_{CM}, c_{proj}\rangle^{HO}$ $= \sum_{i} c_{i} |SD_{i}\rangle.$

where $U_{N_{CM},c_{proj}}^{HO}(K_{CM})$ comes from:

$$\hat{H}_{\rm CM} = \frac{\hat{P}_{\rm CM}^2}{2M_{\rho}} + U_{\rm CM}(\hat{R}_{\rm CM}).$$

Introduction 000	Formalism 0000000		Applications 0000000000000)	Outlook 000
Effective in	NTERACTION FOR	GSM	I/GSM-CC		
→ Developm	ent of an effective inte	raction	Y. Jaganathe	n, R. Id Betan <i>et al</i> ., In prepa	aration.
 Derived from H. Furutani et al., Pr H. Furutani et al., Pr Terms: V_c, V 	the FHT interaction. $_{02}$ Theor. Phys. 60, 307 (1978) $_{02}$ Theor. Phys. 62, 981 (1979) V_{00} , V_T and V_C .	2 - 3 1 - 3 0 -123 -	22 (132444) (732044) 22 (132444) 22 (132444) 22 (132444) 24 (132	<u> </u>	4He
 Short-range (Gaussian).	4	1		
• POUNDerS a http://www.mcs.anl.	algorithm. gov/tao	-10 (Me) -11	3/2 *	all ^{or}	
 Chi-squared r 	ninimization:	(⁴ He)]		2	
$\chi^{2}(\boldsymbol{p}) = \sum_{i=1}^{N_{\text{data}}} \frac{[\mathcal{O}_{i}(\boldsymbol{p})]}{I_{i}}$	$\frac{\mathcal{O}(\mathbf{D}) - \mathcal{O}_i^{\exp}]^2}{\Delta \mathcal{O}_i^2}, \frac{\chi^2(\mathbf{p}_0)}{N_{\text{d.o.f.}}} = 1.$	□ -17 - □ -18 - -18 - -27 -	2th	3/2 * **********************************	*
and removing of the adopted errors at t	he arbitrariness in the the minimum.	-28 - -29 - -35 -	2	3/2* *	
J. Phys. G: Nucl. Part. Phys. 4	1, 074001 (2014)	-36 - -37 -		0" + 1/2-	*
 Woods-Saxor n/p - α 	n ⁴ He core. phase shifts up to	+	5 6 7	8 9 10 A	11
20 MeV.		• 2n	3n with 3 nucle	oons may in the	

• s.p. energies and widths.

2p, 3n with 3 nucleons max in the continuum.

Select the most important

continuum configurations by retaining only the "largest" eigenvalues of the density matrix at each iteration

\rightarrow Extreme halo systems and density in the rotor frame.

\rightarrow Extreme halo systems and density in the rotor frame.

\rightarrow Extreme halo systems and density in the rotor frame.

 $\Re(E)(\mathbf{mRy})$

except one vanish.

 $\Re(E)(\mathbf{mRy})$

except one vanish.

APPLICATIONS

		Applications	
000	000000	0000000000000	000

 \rightarrow Competition between threshold effects and rotation.

• Above the threshold: weak coupling of the rotational motion of the dipole and the valence electron.

- Collective bands: $E_{J,l_c=6-8}(j)$.
- \rightarrow Study of quadrupolar anions.

- Competition between p and γ emissions • 141 Ho = 140 Dy + p Important Coulomb barrier. 386 (3)/21 Quadrupole moment. 2200 Collective bands in heavy 23331 (27/2 p-rich nuclei? . (9/21) 1695.5 68'6' What about heavy 9781 n-rich nuclei? 100% (centrifugal barrier) 4997 T., =4.2 ms
- \rightarrow Under investigation.

		Applications	
000	0000000	0000000000000	000

$$g_2: J = 5(I_c = 6, j_c = 1).$$

		Applications	
000	0000000	0000000000000	000

$$g_2: J = 5(I_c = 6, j_c = 3).$$

		Applications	
000	0000000	0000000000000	000

$$g_2$$
: $J = 5(I_c = 6, j_c = 5)$.

		Applications	
000	0000000	0000000000000	000

$$g_2: J = 5(I_c = 6, j_c = 7).$$

		Applications	
000	0000000	0000000000000	000

$$g_2$$
: $J = 5(I_c = 6, j_c = 9)$.

		Applications	
000	0000000	0000000000000	000

$$g_2$$
: $J = 5(l_c = 6, j_c = 11)$.

000	0000000	00000000000000000000000000000000000000	0	000 000
Additional A	APPLICATIONS: RI	CHARDSON MO	DEL	
• Pairing Hamiltonian $H = \oint 2\epsilon_k b_k^{\dagger} b_k dk - 0$	a in the Berggren basis: $G \oint b_k^{\dagger} b_{k'} dk dk' \qquad \begin{array}{c} (d) : \begin{bmatrix} b_k, b_k \\ (c) : \begin{bmatrix} b_k, b_k \end{bmatrix} \\ (c) : \begin{bmatrix} b_k, b_k \end{bmatrix} \end{array}$	J. von Delfi R. W $\begin{bmatrix} k \\ R \end{bmatrix}$ $\begin{bmatrix} k \\ R \end{bmatrix}$: et al., Proceeding of the NATO A: ¹ . Richardson, Phys. Lett. 3, 277 (1 ¹ . Richardson <i>et al.</i> , Nucl. Phys. 52, _k / n _k	51 (1999) 963) 221 (1964)
• Discretization: $H = \sum_{a}^{L} 2\epsilon_{a} \tilde{b}_{a}^{\dagger} \tilde{b}_{a} - G \sum_{a}^{A} \tilde{b}_{a}^{\dagger} \tilde{b}_{a} - G \sum_{a}^{A} \tilde{b}_{a}^{\dagger} \tilde{b}_{a}^{\dagger} = 2\delta_{a}^{A}$	$\sum_{a'} \tilde{b}_{a}^{\dagger} \tilde{b}_{a'} \sqrt{w_a} \sqrt{w_{a'}} \text{with} \tilde{b}_{a}^{\dagger} = \tilde{b}_{a'}$ $\sum_{a'} (\Omega_a - 2\tilde{n}_a)$	$y_{k_a}\sqrt{w_a}$ 10 ⁻¹ 10 ⁻³		
 Problem: G_{aa'} = C Approximate solution 	$\sqrt{w_a}\sqrt{w_{a'}} \Rightarrow No \text{ analytical so}$ on of the pairing problem:	lution $\begin{bmatrix} 10^{-5} \\ -5 \\ -7 \\ 10^{-7} \end{bmatrix}$		
$(\mathbf{d}): \begin{bmatrix} b_k, b_{k'}^{\dagger} \end{bmatrix} = 2\delta_{kk'}$ $(\mathbf{c}): \begin{bmatrix} b_k, b_{k'}^{\dagger} \end{bmatrix} = 2\delta(k)$	$(\Omega_k - 2n_k)$ $(-k')\Omega_k - 2\delta(k-k')n_k$	10^{-11} 10^{-13} 10^{-2}	- 4 pairs	
• Discretization: $\Rightarrow \left[\tilde{b}_{a}, \tilde{b}_{a'}^{\dagger}\right] = 2\delta_{a}$	$_{a'}(\Omega_a-\frac{2}{w_a}\tilde{n}_a)$	10 ° 10 ° 10 ° 10 ° 10 ° 10 ° 10 ° 10 °	Relative error for the energy ind the width of the g.s.	
• Ansatz: $ \Psi\rangle = \prod_{i=1}^{N_{\text{pair}}} \mathcal{N}_i^{-1} \left(\sum_{a}^{L} \frac{1}{2} \right)$	$\left. \frac{\tilde{b}_{a}^{\dagger}}{\epsilon_{a} - E_{i}} \right) \rangle$ with $\mathcal{N}_{i} = \sqrt{\sum_{a} \frac{1}{2}}$	$\frac{w_a}{(\epsilon_a - E_i)^2} = \begin{bmatrix} 10^{-10} & 0 \\ 10^{-12} & 0 \\ 10^{-14} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	4 pairs, 10pts/seg). 	
$\left(1-2G\sum_{a}^{L}\frac{\Omega_{a}/4-\nu_{a}/2}{2\epsilon_{a}-E_{i}}\right)$	$\frac{2}{2} + 2G \sum_{j \neq i}^{N_{\text{pair}}} \frac{1}{E_j - E_i} - 2G \sum_{c}^{\ell_{\text{max}}, jm:c}$	$\int_{L_c^+} \frac{\Omega_c/4 - \nu_c/2}{\hbar^2 k_c^2/m - E_i} = 0$	A. Mercenne et al., In preparation	92/97

On-the-fly: 5-10 times longer, poorer scaling factor.

Thank you for your attention !

Un grand merci à Eric Olsen !

