

Theory for open-shell nuclei near the limits of stability May 11-29, 2015, East Lansing, MI, USA

Overview

- Arrive at a Hamiltonian (a "standard model") of nuclear physics
- Understand the link between (Lattice) QCD and EFT and nuclei
- What are the limits for the existence of nuclei (i.e. drip line location)
- Explain collective phenomena from individual motion of nuclei
- Error estimates of computed quantities

. . . .

ab initio capabilities (a selection)

ab initio capabilities (a selection)

Lattice QCD

PHYSICAL REVIEW LETTERS

LQCD is computationally demanding

- unphysical pion masses right now
- requires larger lattices
- exponentially small signal-to-noise ratio
- difficult to identify bound states
- growth of Wick contractions for large number of quarks

This talk will be about precision and accuracy

This talk will be about precision and accuracy

	Accurate	Inaccurate (systematic error)
Precise		
Imprecise (reproducibility error)		X X X X

This talk will be about precision and accuracy

E. Epelbaum et al. Rev. Mod. Phys. 81, 1773 (2009) R. Machleidt et al. Phys. Rep. 503, 1 (2011)

N4LO

E. Epelbaum et al. Rev. Mod. Phys. 81, 1773 (2009) R. Machleidt et al. Phys. Rep. 503, 1 (2011)

Nuclear physics at NNLO (AE et al PRL 110, 192502 (2013)) Statistical Uncertainties at NNLO (AE et al J. Phys. G. 42 034003 (2014)) Still many unresolved issues:

- order-by-order convergence
- uncertainties
- cutoff dependence
- power counting

LO +-+X782 MeV hard scale (Ω) $\Lambda_{\mathbf{X}}$ 770 MeV $X | X | X | X \dots$ NLO mass gap (Q/Λ_{χ}) **NNLO** optimized '15 soft scale 140 MeV

Nuclear physics at NNLO (AE et al PRL 110, 192502 (2013)) Statistical Uncertainties at NNLO (AE et al J. Phys. G. 42 034003 (2014)) Still many unresolved issues:

- order-by-order convergence
- uncertainties
- cutoff dependence
- power counting

mathematical optimization and statistical regression are indispensable tools

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & &$$

0-290	1.10	1.04
190-290	1.15	1.11
100-190	1.08	1.1
0-100	1.06	0.95
Tlab (MeV)	Idaho-N3LO	AV18

Tlab (MeV)	Idaho-N3LO	AV18
0-100	1.06	0.95
100-190	1.08	1.1
190-290	1.15	1.11
0-290	1.10	1.04

• NNN-force always fitted to an existing NN-force.

Tlab (MeV)	Idaho-N3LO	AV18
0-100	1.06	0.95
100-190	1.08	1.1
190-290	1.15	1.11
0-290	1.10	1.04

- NNN-force always fitted to an existing NN-force.
- Sub-leading pion-nucleon LECs taken from separate pion-nucleon analysis.

Tlab (MeV)	Idaho-N3LO	AV18
0-100	1.06	0.95
100-190	1.08	1.1
190-290	1.15	1.11
0-290	1.10	1.04

- NNN-force always fitted to an existing NN-force.
- Sub-leading pion-nucleon LECs taken from separate pion-nucleon analysis.
- Several choices in what scattering database to use.

Tlab (MeV)	Idaho-N3LO	AV18
0-100	1.06	0.95
100-190	1.08	1.1
190-290	1.15	1.11
0-290	1.10	1.04

- NNN-force always fitted to an existing NN-force.
- Sub-leading pion-nucleon LECs taken from separate pion-nucleon analysis.
- Several choices in what scattering database to use.
- Low-energy and high-energy data weighted equally.

Tlab (MeV)	Idaho-N3LO	AV18
0-100	1.06	0.95
100-190	1.08	1.1
190-290	1.15	1.11
0-290	1.10	1.04

- NNN-force always fitted to an existing NN-force.
- Sub-leading pion-nucleon LECs taken from separate pion-nucleon analysis.
- Several choices in what scattering database to use.
- Low-energy and high-energy data weighted equally.
- Electromagnetic effects sometimes neglected.

Tlab (MeV)	Idaho-N3LO	AV18
0-100	1.06	0.95
100-190	1.08	1.1
190-290	1.15	1.11
0-290	1.10	1.04

- NNN-force always fitted to an existing NN-force.
- Sub-leading pion-nucleon LECs taken from separate pion-nucleon analysis.
- Several choices in what scattering database to use.
- Low-energy and high-energy data weighted equally.
- Electromagnetic effects sometimes neglected.
- LECs tuned by hand more often than not.

Tlab (MeV)	Idaho-N3LO	AV18
0-100	1.06	0.95
100-190	1.08	1.1
190-290	1.15	1.11
0-290	1.10	1.04

- NNN-force always fitted to an existing NN-force.
- Sub-leading pion-nucleon LECs taken from separate pion-nucleon analysis.
- Several choices in what scattering database to use.
- Low-energy and high-energy data weighted equally.
- Electromagnetic effects sometimes neglected.
- LECs tuned by hand more often than not.
- What are the resulting uncertainties (and there are several of them....)

Tlab (MeV)	Idaho-N3LO	AV18
0-100	1.06	0.95
100-190	1.08	1.1
190-290	1.15	1.11
0-290	1.10	1.04

- NNN-force always fitted to an existing NN-force.
- Sub-leading pion-nucleon LECs taken from separate pion-nucleon analysis.
- Several choices in what scattering database to use.
- Low-energy and high-energy data weighted equally.
- Electromagnetic effects sometimes neglected.
- LECs tuned by hand more often than not.
- What are the resulting uncertainties (and there are several of them....)

Tlab (MeV)	Idaho-N3LO	AV18
0-100	1.06	0.95
100-190	1.08	1.1
190-290	1.15	1.11
0-290	1.10	1.04

- NNN-force always fitted to an existing NN-force.
- Sub-leading pion-nucleon LECs taken from separate pion-nucleon analysis.
- Several choices in what scattering database to use.
- Low-energy and high-energy data weighted equally.
- Electromagnetic effects sometimes neglected.
- LECs tuned by hand more often than not.
- What are the resulting uncertainties (and there are several of them....)

Let's adress these points

Tlab (MeV)	Idaho-N3LO	AV18
0-100	1.06	0.95
100-190	1.08	1.1
190-290	1.15	1.11
0-290	1.10	1.04

$$\chi^{2}(\mathbf{p}) = \sum_{i \in \mathbb{M}} \left(\frac{\mathcal{O}_{i}^{\text{theo}}(\mathbf{p}) - \mathcal{O}_{i}^{\text{exp}}}{\sigma_{i}^{\text{total}}} \right)^{2} = \sum_{i \in \mathbb{M}} R_{i}^{2}(\mathbf{p})$$

$$\chi^2(\mathbf{p}) \equiv \sum_{i \in \mathbb{M}} R_i^2(\mathbf{p}) = \sum_{j \in \mathbb{N}\mathbb{N}} R_j^2(\mathbf{p}) + \sum_{k \in \pi\mathbb{N}} R_k^2(\mathbf{p}) + \sum_{l \in \mathbb{N}\mathbb{N}\mathbb{N}} R_l^2(\mathbf{p})$$

$$\chi^{2}(\mathbf{p}) = \sum_{i \in \mathbb{M}} \left(\frac{\mathcal{O}_{i}^{\text{theo}}(\mathbf{p}) - \mathcal{O}_{i}^{\text{exp}}}{\sigma_{i}^{\text{total}}} \right)^{2} = \sum_{i \in \mathbb{M}} R_{i}^{2}(\mathbf{p})$$

$$\chi^2(\mathbf{p}) \equiv \sum_{i \in \mathbb{M}} R_i^2(\mathbf{p}) = \sum_{j \in \mathbb{N}\mathbb{N}} R_j^2(\mathbf{p}) + \sum_{k \in \pi\mathbb{N}} R_k^2(\mathbf{p}) + \sum_{l \in \mathbb{N}\mathbb{N}\mathbb{N}} R_l^2(\mathbf{p})$$

Observable	LO	NLO	NNLO
NN scattering	X	X	X
² H: E _{gs} , r _{pt-p} , Q	X	X	X
πN scattering			X
³ He: E _{gs} , r _{pt-p}			X
³ H: E_{gs} , r_{pt-p} , $T_{1/2}$			X

$$\chi^{2}(\mathbf{p}) = \sum_{i \in \mathbb{M}} \left(\frac{\mathcal{O}_{i}^{\text{theo}}(\mathbf{p}) - \mathcal{O}_{i}^{\text{exp}}}{\sigma_{i}^{\text{total}}} \right)^{2} = \sum_{i \in \mathbb{M}} R_{i}^{2}(\mathbf{p})$$

$$\chi^{2}(\mathbf{p}) \equiv \sum_{i \in \mathbb{M}} R_{i}^{2}(\mathbf{p}) = \sum_{j \in \mathbb{N}\mathbb{N}} R_{j}^{2}(\mathbf{p}) + \sum_{k \in \pi\mathbb{N}} R_{k}^{2}(\mathbf{p}) + \sum_{l \in \mathbb{N}\mathbb{N}\mathbb{N}} R_{l}^{2}(\mathbf{p})$$

Sequential

Observable	LO	NLO	NNLO	
NN scattering	X	X	X	N IN I
² H: E_{gs} , r_{pt-p} , Q	X	X	X	
πN scattering			X	πN
³ He: E _{gs} , r _{pt-p}			X	
³ H: E_{gs} , r_{pt-p} , $T_{1/2}$			X	NNN

$$\chi^{2}(\mathbf{p}) = \sum_{i \in \mathbb{M}} \left(\frac{\mathcal{O}_{i}^{\text{theo}}(\mathbf{p}) - \mathcal{O}_{i}^{\text{exp}}}{\sigma_{i}^{\text{total}}} \right)^{2} = \sum_{i \in \mathbb{M}} R_{i}^{2}(\mathbf{p})$$

$$\chi^{2}(\mathbf{p}) \equiv \sum_{i \in \mathbb{M}} R_{i}^{2}(\mathbf{p}) = \sum_{j \in \mathbb{N}\mathbb{N}} R_{j}^{2}(\mathbf{p}) + \sum_{k \in \pi\mathbb{N}} R_{k}^{2}(\mathbf{p}) + \sum_{l \in \mathbb{N}\mathbb{N}\mathbb{N}} R_{l}^{2}(\mathbf{p})$$

Simultaneous

	NNLO	NLO	LO	Observable
NINI	×	X	X	NN scattering
ININ	X	X	X	² H: E _{gs} , r _{pt-p} , Q
πN	X			πN scattering
	X			³ He: E _{gs} , r _{pt-p}
NNN	X			³ H: E_{gs} , r_{pt-p} , $T_{1/2}$

$$\chi^{2}(\mathbf{p}) = \sum_{i \in \mathbb{M}} \left(\frac{\mathcal{O}_{i}^{\text{theo}}(\mathbf{p}) - \mathcal{O}_{i}^{\text{exp}}}{\sigma_{i}^{\text{total}}} \right)^{2} = \sum_{i \in \mathbb{M}} R_{i}^{2}(\mathbf{p})$$

$$\chi^{2}(\mathbf{p}) \equiv \sum_{i \in \mathbb{M}} R_{i}^{2}(\mathbf{p}) = \sum_{j \in \mathbb{N}\mathbb{N}} R_{j}^{2}(\mathbf{p}) + \sum_{k \in \pi\mathbb{N}} R_{k}^{2}(\mathbf{p}) + \sum_{l \in \mathbb{N}\mathbb{N}\mathbb{N}} R_{l}^{2}(\mathbf{p})$$

Simultaneous

Observable	LO	NLO	NNLO
NN scattering	X	X	Х
² H: E _{gs} , r _{pt-p} , Q	X	X	X
πN scattering			Х
³ He: E _{gs} , r _{pt-p}			X
³ H: E_{gs} , r_{pt-p} , $T_{1/2}$			Х

Simultaneous optimization critical in order to

- find the optimal set of LECs
- capture all relevant correlations between them
- reduce the statistical uncertainty.

Within such an approach we find that statistical errors are, in general, small, and that the total error budget is dominated by systematic errors.

 $l \in NNN$

 $R_l^2(\mathbf{p})$

 $\chi^2(\mathbf{p}) \equiv \sum_{i \in \mathbb{M}} R$

budget is dominated by systematic err

Observable	LO	NLO	NNLO	
NN scattering	X	X	X	N
² H: E _{gs} , r _{pt-p} , Q	X	X	X	
πN scattering			X	π
³ He: E _{gs} , r _{pt-p}			X	
³ H: E_{gs} , r_{pt-p} , $T_{1/2}$			X	

Optimization Algorithm

POUNDerS	Levenberg-Marquardt	Newtons Method
Approximate Hessian		Exact Hessian
$\chi^2({f p})$	$\frac{\partial \chi^2(\mathbf{p})}{\partial p_i}$	$\frac{\partial \chi^2(\mathbf{p})}{\partial p_i}, \ \frac{\partial^2 \chi^2(\mathbf{p})}{\partial p_i \partial p_j}$

Optimization Algorithm

Computing derivatives

Performance of numerical derivation

Computing derivatives

Performance of numerical derivation

Derivative of χ^2 (arbitrary units)

Precision

Performance of numerical derivation

Precision

Precision

Performance of numerical derivation

- systematic uncertainty (incorrect assumptions)
- statistical uncertainty (fitting)
- numerical uncertainty

$$\sigma_{\rm total}^2 = \sigma_{\rm experiment}^2 + \sigma_{\rm theory}^2$$

- systematic uncertainty (incorrect assumptions)
- statistical uncertainty (fitting)
- numerical uncertainty

$$\sigma_{\rm total}^2 = \sigma_{\rm experiment}^2 + \sigma_{\rm theory}^2$$

- systematic uncertainty (incorrect assumptions)
- statistical uncertainty (fitting)
- numerical uncertainty

$$\sigma_{\rm total}^2 = \sigma_{\rm experiment}^2 + \sigma_{\rm theory}^2$$

- systematic uncertainty (incorrect assumptions)
- statistical uncertainty (fitting)
- numerical uncertainty

$$\sigma_{\rm total}^2 = \sigma_{\rm experiment}^2 + \sigma_{\rm theory}^2$$

$$\frac{\sigma_{\text{theory}}^2}{\sigma_{\text{numerical}}^2} + \sigma_{\text{method}}^2 + \sigma_{\text{model}}^2$$

- systematic uncertainty (incorrect assumptions)
- statistical uncertainty (fitting)
- numerical uncertainty

$$\sigma_{\rm total}^2 = \sigma_{\rm experiment}^2 + \sigma_{\rm theory}^2$$

$$\frac{\sigma_{\text{theory}}^2}{\sigma_{\text{numerical}}^2} + \sigma_{\text{method}}^2 + \sigma_{\text{model}}^2$$

theoretical error sources:

- systematic uncertainty (incorrect assumptions)
- statistical uncertainty (fitting)
- numerical uncertainty

$$\sigma_{\rm total}^2 = \sigma_{\rm experiment}^2 + \sigma_{\rm theory}^2$$

$$\frac{\sigma_{\text{theory}}^2}{\sigma_{\text{numerical}}^2} + \sigma_{\text{method}}^2 + \sigma_{\text{model}}^2$$

theoretical error sources:

- systematic uncertainty (incorrect assumptions)
- statistical uncertainty (fitting)
- numerical uncertainty

$$\sigma_{\rm total}^2 = \sigma_{\rm experiment}^2 + \sigma_{\rm theory}^2$$

$$\frac{\sigma_{\text{theory}}^2}{\sigma_{\text{numerical}}^2} + \frac{\sigma_{\text{method}}^2}{\sigma_{\text{model}}^2} + \sigma_{\text{model}}^2$$

theoretical error sources:

- systematic uncertainty (incorrect assumptions)
- statistical uncertainty (fitting)
- numerical uncertainty

Due to approximations in the solution of the Schrodinger equation. We estimate these using exponential extrapolation. The S-matrix for twonucleon scattering states is constructed to sufficient precision using L=30 partial-waves.

$$\frac{\sigma_{\text{theory}}^2}{\sigma_{\text{numerical}}^2} + \frac{\sigma_{\text{method}}^2}{\sigma_{\text{model}}^2} + \sigma_{\text{model}}^2$$

theoretical error sources:

systematic uncertainty (incorrect assumptions) •

- statistical uncertainty (fitting)
- numerical uncertainty

certainty				
		Exp. value	Ref.	$\sigma_{ m exp+method}$
Due to approximations in the solution	$E(^{2}\mathrm{H})$	$-2.22456627(46)^{a}$	[38]	$0.47 \cdot 10^{-6}$
	$E(^{3}\mathrm{H})$	$-8.4817987(25)^{\rm a}$	[38]	$3.3\cdot10^{-3}$
of the Schrodinger equation. We	$E(^{3}\text{He})$	$-7.7179898(24)^{\rm a}$	[38]	$3.8\cdot10^{-3}$
estimate these using exponential	$E(^{4}\text{He})$	$-28.2956099(11)^{a}$	[38]	$6.5 \cdot 10^{-3}$
	$r_{\rm pt-p}(^{2}{\rm H})$	$1.97559(78)^{b}$	[65, 73]	$0.78\cdot10^{-3}$
extrapolation. The S-matrix for two-	$r_{\rm pt-p}(^{3}{\rm H})$	1.587(41)	65	0.041
nucleon scattering states is	$r_{\rm pt-p}(^{3}{\rm He})$	1.7659(54)	[65]	0.013
ndereon searrering states is	$r_{\rm pt-p}(^{4}{\rm He})$	1.4552(62)	[65]	0.0071
constructed to sufficient precision	$Q_{ m d}$	$0.27(1)^{c}$		0.01
using L=30 partial-waves.	$E_{A}^{1}(^{3}\mathrm{H})$	0.6848(11)	[68]	0.0011

 $\sigma_{\rm total}^2 = \sigma_{\rm experiment}^2 + \sigma_{\rm theory}^2$

$$\frac{\sigma_{\text{theory}}^2}{\sigma_{\text{numerical}}^2} + \frac{\sigma_{\text{method}}^2}{\sigma_{\text{model}}^2} + \sigma_{\text{model}}^2$$

theoretical error sources:

- systematic uncertainty (incorrect assumptions)
- statistical uncertainty (fitting)
- numerical uncertainty

$$\sigma_{\rm theory}^2$$
 =

method

theoretical error sources:

- systematic uncertainty (incorrect assumptions)
- statistical uncertainty (fitting)
- numerical unc

$$\sigma_{\text{rotating}}^{2} = \sigma_{\text{experiment}}^{2} + \sigma_{\text{theory}}^{2}$$

$$\sigma_{\text{total}}^{2} = \sigma_{\text{experiment}}^{2} + \sigma_{\text{total}}^{2} + \sigma_{\text{total}}^{2}$$

$$\sigma_{\text{total}}^{2} = \sigma_{\text{total}}^{2} + \sigma_{\text{total}}^{2} + \sigma_{\text{total}}^{2} + \sigma_{\text{total}}^{2}$$

$$\sigma_{\text{total}}^{2} = \sigma_{\text{total}}^{2} + \sigma_{\text{total}}^{2} + \sigma_{\text{total}}^{2} + \sigma_{\text{total}}^{2}$$

$$\sigma_{\text{total}}^{2} = \sigma_{\text{total}}^{2} + \sigma_{\text{tota$$

Algorithmic the implementation of the computer model. (Machine epsilon of float 10⁻¹⁶)

We safely neglect this.

estimate this from the rest term in the xEFT expansion: $\sigma_{\text{model},x}^{(\text{amplitude})} = \mathcal{C}_x \left(\frac{Q}{\Lambda}\right)^{\nu+1}, x \in \{\text{NN}, \pi\text{N}\}$

$$\chi^{2}(\mathbf{p}) = \sum_{i \in \mathbb{M}} \left(\frac{\mathcal{O}_{i}^{\text{theo}}(\mathbf{p}) - \mathcal{O}_{i}^{\text{exp}}}{\sigma_{i}^{\text{total}}} \right)^{2} = \sum_{i \in \mathbb{M}} R_{i}^{2}(\mathbf{p})$$

$$\chi^{2}(\mathbf{p}) = \sum_{i \in \mathbb{M}} \left(\frac{\mathcal{O}_{i}^{\text{theo}}(\mathbf{p}) - \mathcal{O}_{i}^{\exp}}{\sigma_{i}^{\text{total}}} \right)^{2} = \sum_{i \in \mathbb{M}} R_{i}^{2}(\mathbf{p})$$
$$\dots + \sigma_{\text{model},x}^{(\text{amplitude})} = \mathcal{C}_{x} \left(\frac{Q}{\Lambda}\right)^{\nu+1}, x \in \{\text{NN}, \pi\text{N}\}$$

Uncertainty Quantification

Statistical uncertainty in the parameter vector at the optimum is given by the surface of the objective function.

Computational Experience With Confidence Regions and Confidence Intervals for Nonlinear Least Squares J. R. Donaldson and R. B. Schnabel *Technometrics* 29 67 (1987)

Error estimates of theoretical models: a guide

J Dobaczewski, W Nazarewicz and P-G Reinhard, J. Phys.G 41 074001 (2014)

Uncertainty Quantification

Statistical uncertainty in the parameter vector at the optimum is given by the surface of the objective function.

Computational Experience With Confidence Regions and Confidence Intervals for Nonlinear Least Squares J. R. Donaldson and R. B. Schnabel *Technometrics* 29 67 (1987)

Error estimates of theoretical models: a guide

J Dobaczewski, W Nazarewicz and P-G Reinhard, J. Phys.G 41 074001 (2014)

Uncertainty Quantification

J Dobaczewski, W Nazarewicz and P-G Reinhard, J. Phys.G 41 074001 (2014)

Error Propagation

Simultaneous Optimization is Key

SLE VII. C. TA 3LE VII. Obtained πN parameters and their statistical

uncertainties for the NNLO potentials. c_i , d_i and e_i are in units of GeV⁻¹, GeV⁻² and GeV⁻³ respectively.

	NNLOsep	NNLOsim
c_1	-0.68(50)	+0.22(29)
c_2	+3.0(14)	+5.1(10)
c_3	-4.12(32)	-3.56(13)
C4	+5.35(81)	+3.933(85)
a1 a2	0.22(11)	0.020(04)

Observable	NNLO sim	NNLO _{sep}	E×p
E _{gs} (⁴HE)	-28.26 ⁺⁴	-28 ⁺⁸	-28.30(1)
[MeV]	-5	-18	
r _{pt-p} (⁴ He)	1.445 +2	1.44 +15	1.455(7)
[fm]	-2	-28	

Simultaneous Optimization is Key

	NNLOsep	NNLOsim
c_1	-0.68(50)	+0.22(29)
c_2	+3.0(14)	+5.1(10)
c_3	-4.12(32)	-3.56(13)
c_4	+5.35(81)	+3.933(85)
$a_1 + a_2$	0.22(11)	0.020(01)

Covariance Analysis

what goes wrong: radii, binding energies, spectra, ...

S. Binder et al. Phys. Lett. B 736, 119 (2014)

D. Steppenbeck et al. Nature 502, 207-210 (2013)

what goes wrong: radii, binding energies, spectra, ...

S. Binder et al. Phys. Lett. B 736, 119 (2014)

D. Steppenbeck et al. Nature 502, 207-210 (2013)

Interaction: NN+3NF(non-local) NNLO cutoff=450 MeV

Optimization: vary all LECs in NN+3NF simultaneously

Design goal: describe binding energies and radii for A=2, 3, 4, p-shell, and sd-shell

$$\min_{\vec{x}} \left[f(\vec{x}) = \sum_{q=1}^{N} \left(\frac{O(\vec{x})_q - O_q^{\exp}}{w_q} \right)^2 \right]$$

Interaction: NN+3NF(non-local) NNLO cutoff=450 MeV

Optimization: vary all LECs in NN+3NF simultaneously

Design goal: describe binding energies and radii for A=2, 3, 4, p-shell, and sd-shell

$$\min_{\vec{x}} \left[f(\vec{x}) = \sum_{q=1}^{N} \left(\frac{O(\vec{x})_q - O_q^{\exp}}{w_q} \right)^2 \right]$$

Nucleon-nucleon scattering data up to Tlab=35 MeV

Scattering lengths and effective ranges in the ¹S₀ channels

NCSM and CCSD(Nmax=8) solutions of binding energies and charge radii for a selected set of light nuclei

Interaction: NN+3NF(non-local) NNLO cutoff=450 MeV

Optimization: vary all LECs in NN+3NF simultaneously

Design goal: describe binding energies and radii for A=2, 3, 4, p-shell, and sd-shell

$$\min_{\vec{x}} \left[f(\vec{x}) = \sum_{q=1}^{N} \left(\frac{O(\vec{x})_q - O_q^{\exp}}{w_q} \right)^2 \right]$$

Nucleon-nucleon scattering data up to Tlab=35 MeV

Scattering lengths and effective ranges in the ¹S₀ channels

NCSM and CCSD(Nmax=8) solutions of binding energies and charge radii for a selected set of light nuclei

Interaction: NN+3NF(non-local) NNLO cutoff=450 MeV

Optimization: vary all LECs in NN+3NF simultaneously

Design goal: describe binding energies and radii for A=2, 3, 4, p-shell, and sd-shell

$$\min_{\vec{x}} \left[f(\vec{x}) = \sum_{q=1}^{N} \left(\frac{O(\vec{x})_q - O_q^{\exp}}{w_q} \right)^2 \right]$$

Nucleon-nucleon scattering data up to Tlab=35 MeV

Scattering lengths and effective ranges in the ¹S₀ channels

NCSM and CCSD(Nmax=8) solutions of binding energies and charge radii for a selected set of light nuclei

р

n

triples-cluster corrections

hw=22 MeV

account for the effects of a larger model spaces and

triples-cluster corrections

 $1s_{1/2}$

n

р

- Nmax=8
- hw=22 MeV

- 3NF in NO2B
- Nmax=8
- hw=22 MeV

...CCSD results for A=14,16,22,24,25 nuclei. A nucleus-dependent estimates was employed to account for the effects of a larger model spaces and triples-cluster corrections

 $1s_{1/2}$

n

р

No-Core Shell M

- Nmax=40/20 \bullet
- hw=36 MeV

Coupled Cluster

- 3NF in NO2E
- Nmax=8
- hw=22 MeV

A nucleus-dependent estimates was employed to account for the effects of a larger model spaces and triples-cluster corrections

No-Core Shell M

- Nmax=40/20 \bullet
- hw=36 MeV

Coupled Cluster

- 3NF in NO2E
- Nmax=8
- hw=22 MeV

A nucleus-dependent estimates was employed to account for the effects of a larger model spaces and triples-cluster corrections

NNLO_{sat} phase shifts and scattering observables

NNLO_{sat} and the reproduction of input data

NCSM Energies and charge radii with NNLOsat	CCSD Energies and charge radii with NNLOsat

					-		
Observable	Theory	Experiment	D/Exp (%)	Observable	Theory	Experiment	D/Exp (%)
E _{gs} (²H)	-2.224574	2.224575(9) MeV	0.0	E _{gs} (¹⁴ C)	103.6	105.285 MeV	1.6
r _{pt-p} (²H)	1.978	1.97535(85) fm	0.1	r _{ch} (14 C)	2.48	2.5025(87) fm	0.9
Q _D (² H)	0.270	0.2859(3) fm ²	5.6	E _{gs} (¹⁶ O)	124.4	127.619 MeV	2.5
P _D (² H)	3.46%	_	_	r _{ch} (¹⁶ O)	2.71	2.6991(52) fm	0.4
E _{gs} (³ H)	-8.52	-8.482 MeV	0.4	E _{gs} (²² O)	160.8	162.028(57) MeV	0.8
r _{ch} (³ H)	1.78	1.7591(363) fm	1.1	E _{gs} (²⁴ O)	168.1	168.96(12) MeV	0.5
E _{gs} (³ He)	-7 76	-7 718 MeV	0.5	E _{gs} (²⁵ O)	167.4	168.18(10) MeV	0.5
(3He)	1 00	1 9661(30) fm	1.2				
	00.42		0.5				
	-20.43		0.0				
	1.70	1.0/00(20) IM	I.5				

¹S₀ effective range expansion

Observable	Theory	Experiment	D/Exp (%)
a _{nn}	-18.93	-18.9(4) fm	0.2
r _{nn}	2.855	2.75(11) fm	3.8
a _{np}	-23.728	-23.740(20) fm	0.0
r _{np}	2.798	2.77(5) fm	1.0
a _{pp}	-7.8258	-7.8196(26) fm	0.0
r _{pp}	2.855	2.790(14) fm	2.3

 $|<^{3}HellE_{1}^{A}||^{3}H>| = 0.6343$ (empirical = 0.6848(11))

$$\begin{split} \langle r_{\rm ch}^2 \rangle &= \langle r_{\rm pp}^2 \rangle + \langle R_{\rm p}^2 \rangle + \frac{N}{Z} \langle R_{\rm n}^2 \rangle + \frac{3\hbar^2}{4m_p^2 c^2} \\ {\rm R}_{\rm p} = &0.8775 \ {\rm fm} \\ ({\rm R}_{\rm n})^{2} = &0.1149 \ {\rm fm}^2 \\ {\rm Darwin-Foldy} = &0.033 \ {\rm fm}^2 \end{split}$$

NNLO_{sat} and the reproduction of input data

NCSM Energies and	charge radii with NNLOsat	CCSD Energies and	charge radii with NNLOsat
3	5	3	3

Observable	Theory	Experiment	D/Exp (%)	Observable	Theory	Experiment	D/Exp (%)
E _{gs} (² H)	-2.224574	2.224575(9) MeV	0.0	E _{gs} (¹⁴ C)	103.6	105.285 MeV	1.6
r _{pt-p} (2H)	1.978	1.97535(85) fm	0.1	r _{ch} (¹⁴ C)	2.48	2.5025(87) fm	0.9
Q _D (² H)	0.270	0.2859(3) fm ²	5.6	E _{gs} (¹⁶ O)	124.4	127.619 MeV	2.5
P _D (² H)	3.46%	_	_	r _{ch} (¹⁶ O)	2.71	2.6991(52) fm	0.4
E _{gs} (³ H)	-8.52	-8.482 MeV	0.4	E _{gs} (²² O)	160.8	162.028(57) MeV	0.8
r _{ch} (³ H)	1.78	1.7591(363) fm	1.1	E _{gs} (²⁴ O)	168.1	168.96(12) MeV	0.5
	7.70	7 740 84.34	0.5	E _{gs} (²⁵ O)	167.4	168.18(10) MeV	0.5
Egs(°He)	-7.76	-/./18 MeV	0.5		1		

NNLOsat

reproduces the binding energies and the charge radii of selected psd-shell nuclei to **1%**

 $\langle r_{\rm ch}^2 \rangle = \langle r_{\rm pp}^2 \rangle + \langle R_{\rm p}^2 \rangle +$ $\overline{Z}^{\langle n_n \rangle}$ $4m_{p}^{2}c^{2}$ $R_p=0.8775 \text{ fm}$ (R_n)^{2=-0.1149 fm²} Darwin-Foldy=0.033 fm²

¹S₀ effective range expansion

1.99

-28.43

1.70

r_{ch}(³He)

E_{gs}(⁴He)

r_{ch}(⁴He)

Observable	Theory	Experimen	an
a _{nn}	-18.93	-18.9(4) fm	
r _{nn}	2.855	2.75(11) fm	
a _{np}	-23.728	-23.740(20) fm	
r _{np}	2.798	2.77(5) fm	1.0
a _{pp}	-7.8258	-7.8196(26) fm	0.0
r _{pp}	2.855	2.790(14) fm	2.3

1.9661(30) fm

-28.296 Me

1.6755(28) f

¹⁶O charge density and negative parity states

One-nucleon separation energies

	NNLOsat	Experiment
S _n (¹⁷ O)	4.0 MeV	4.14 MeV
S _n (¹⁶ O)	14.0 MeV	15.67 MeV
$S_{p}(^{17}F)$	0.5 MeV	0.60 MeV
S _p (¹⁶ O)	10.7 MeV	12.12 MeV

A-CCSD(T) hw=22 MeV, Nmax=14 E3max=16 NO2B HF basis +leading order NNN contribution to the total energy

> *ab initio* challenge: E(3⁻)=6.34 MeV

NNLOsat E(3⁻)=6.13 MeV, 90% Ip-1h excitation (p_{1/2}-d_{5/2})

Ip-Ih states sensitive to the particle-hole
gap (A=16/17 separation energies)

Experimental charge distribution data: H. DeVries, et al At. Data Nucl. Data Tables 36, 494 (1987)

Spectra, binding energies and radii

A-CCSD(T) hw=22 MeV, Nmax=14 E3max=16 NO2B HF basis +leading order NNN contribution to the total energy

Ground s	tate energ	ies in MeV
	NNLO _{sat}	Exp.
⁶ Li	32.4	32.0
⁸ He	30.9	31.5
⁹ Li	43.9	45.3
¹⁴ N	103.7	104.7
²² F	163.0	167.7
²⁴ F	175.1	179.1

	Radii in fm:						
	charge matter Exp.						
⁸ He	1.91		1.959(16)				
⁹ Li	2.22		2.217(35)				
²² O	(2.72)	2.80	2.75(15)				
²⁴ 0	(2.76)	2.95					

¹⁸O spectra compressed E(2⁺)=0.7 MeV (exp. 1.9 MeV)

Spectra, binding energies and radii

	E _{gs} (MeV)	r _{ch} (fm)	E(3 ⁻) (MeV)
NNLOsat	326	3.48	3.81
Experimen	342	3. 48	3.74

A-CCSD(T) hw=22 MeV, Nmax=14 E3max=16 NO2B HF basis +leading order NNN contribution to the total energy

Ground s	tate energ	gies in MeV.
	NNLO _{sat}	Exp.
⁶ Li	32.4	32.0
⁸ He	30.9	31.5
⁹ Li	43.9	45.3
¹⁴ N	103.7	104.7
²² F	163.0	167.7
²⁴ F	175.1	179.1

	Radii in fm:						
	charge	matter	Exp.				
⁸ He	1.91		1.959(16)				
⁹ Li	2.22		2.217(35)				
²² O	(2.72)	2.80	2.75(15)				
²⁴ 0	(2.76)	2.95					

¹⁸O spectra compressed E(2⁺)=0.7 MeV (exp. 1.9 MeV)

NNLO_{sat} and symmetric nuclear matter

NNLO_{sat} and symmetric nuclear matter

Summary and conclusions

- "We are tightening the experiment-theory feedback loop"
- Progress in ab initio nuclear physics using a consistently in-medium optimized force: NNLO_{sat}. (designed for masses and radii)
- In ⁴⁸Ca, we have constructed a bridge to nuclear density functional theory and predicted intervals for relevant observables.
- Next step: the optimization of N3LO NN+3NF.
- Much effort is going into estimating the uncertainty budget of chiral interactions and many-body calculations.
- Advanced optimization/regression technology in place for uncertainty quantification in few-nucleon sector.
- Work in progress to include NNN scattering in optimization.

THANK YOU FOR YOUR ATTENTION

Collaborators:

Boris Carlsson (UiO/Chalmers)

Christian Forssén (Chalmers) Gaute Hagen (UT/ORNL) Morten Hjorth-Jensen (UiO/MSU) Gustav Jansen (UT/ORNL) Ruprecht Machleidt (UI) Petr Navrátil (TRIUMF) Witold Nazarewicz (MSU/UT/ORNL) Thomas Papenbrock (UT/ORNL) Kyle Wendt (UT/ORNL)

Sonia Bacca (TRIUMF) Nir Barnea (HU) Christian Drischler (TUD) Kai Hebeler (TUD) Mirko Miorelli (TRIUMF) Giusephina Orlandini (INFN/TIFPA) Achim Schwenk (TUD)

and special thanks to the Bachelor students:

Dag Fahlin Strömberg (Chalmers) Oskar Lilja (Chalmers) Mattias Lindby (Chalmers) Björn A. Mattsson(Chalmers)

Appendix