Microscopic Shell-Model Calculations in the sd-shell

Bruce R. Barrett University of Arizona, Tucson

COLLABORATORS

Erdal Dikmen, Suleyman Demirel U., Isparta, Turkey
Michael Kruse, Lawrence Livermore National Laboratory
Alexander Lisetskiy, Mintec, Inc., Tucson
Pieter Maris, Iowa State University
Petr Navratil, TRIUMF, Vancouver, BC, Canada
A. M. Shirokov, Lomonosov Moscow State U.
Ionel Stetcu, Los Alamos National Laboratory
James P. Vary, Iowa State University

Towards a unified description of the nucleus

The goal of nuclear structure theory:

exact treatment of nuclei based on NN, NNN,... interactions

need to build a bridge between:

ab initio few-body & light nuclei calculations: $A \leq 24$

 $0\hbar\Omega$ Shell Model calculations: $16 \le A \le 60$

Density Functional Theory calculations: $A \ge 60$

OUTLINE

I. Brief Overview of the No Core Shell Model (NCSM)

II. Ab Initio Shell Model with a Core Approach

III. Results: sd-shell

IV. Summary/Outlook

No Core Shell Model

"Ab Initio" approach to microscopic nuclear structure calculations, in which all A nucleons are treated as being active.

Want to solve the A-body Schrödinger equation

$$H_A \Psi^A = E_A \Psi^A$$

R P. Navrátil, J.P. Vary, B.R.B., PRC <u>62</u>, 054311 (2000) BRB, P. Navratil, J.P. Vary, Prog.Part.Nucl.Phys. 69, 131 (2013). P. Navratil, et al., J. Phys. G: Nucl. Part. Phys. 36, 083101 (2009)

From few-body to many-body

Ab initio No Core Shell Model

Realistic NN & NNN forces

Effective interactions in cluster approximation

Diagonalization of many- body Hamiltonian

Flow chart for a standard NCSM calculation

Many-body experimental data

No-Core Shell-Model Approach

Start with the purely intrinsic Hamiltonian

$$H_A = T_{rel} + \mathcal{V} = \frac{1}{A} \sum_{i < j = 1}^{A} \frac{(\vec{p}_i - \vec{p}_j)^2}{2m} + \sum_{i < j = 1}^{A} V_{NN} \left(+ \sum_{i < j < k}^{A} V_{ijk}^{3b} \right)$$

Note: There are <u>no</u> phenomenological s.p. energies!

Can use <u>any</u> NN potentials

Coordinate space:

Argonne V8', AV18

Nijmegen I, II

Momentum space:

CD Bonn, EFT Idaho

No-Core Shell-Model Approach

Next, add CM harmonic-oscillator Hamiltonian

$$H_{CM}^{HO} = \frac{\vec{P}^2}{2Am} + \frac{1}{2}Am\Omega^2\vec{R}^2; \quad \vec{R} = \frac{1}{A}\sum_{i=1}^{A}\vec{r}_i, \quad \vec{P} = Am\vec{R}$$

To H_A , yielding

$$H_A^{\Omega} = \sum_{i=1}^{A} \left[\frac{\vec{p}_i^2}{2m} + \frac{1}{2} m \Omega^2 \vec{r}_i^2 \right] + \underbrace{\sum_{i < j=1}^{A} \left[V_{NN} (\vec{r}_i - \vec{r}_j) - \frac{m \Omega^2}{2A} (\vec{r}_i - \vec{r}_j)^2 \right]}_{V_{ij}}$$

Defines a basis (i.e. HO) for evaluating

Effective Interaction

• Must truncate to a finite model space

- In general, V_{ij}^{eff} is an A-body interaction
- We want to make an a-body cluster approximation

$$\mathcal{H} = \mathcal{H}^{(I)} + \mathcal{H}^{(A)} \underset{a < A}{\lessapprox} \mathcal{H}^{(I)} + \mathcal{H}^{(a)}$$

Effective interaction in a projected model space $H\Psi_{\alpha} = E_{\alpha}\Psi_{\alpha}$ where $H = \sum_{i=1}^{A} t_i + \sum_{i \leq i} v_{ij}$.

$$\mathcal{H}\Phi_{\beta} = E_{\beta}\Phi_{\beta}$$

$$\Phi_{\beta} = P\Psi_{\beta}$$

P is a projection operator from S into S

$$\langle \tilde{\Phi}_{\gamma} | \Phi_{\beta} \rangle = \delta_{\gamma\beta}$$

$$\mathcal{H} = \sum_{\beta \in \mathcal{S}} |\Phi_{\beta} > E_{\beta} < \tilde{\Phi}_{\beta}|$$

Effective Hamiltonian for NCSM

Solving

$$\mathbf{H}^{\Omega}_{A, a=2} \mathbf{\Psi}_{a=2} = \mathbf{E}^{\Omega}_{A, a=2} \mathbf{\Psi}_{a=2}$$

in "infinite space" 2n+l = 450 relative coordinates

P + Q = 1; P - model space; Q - excluded space;

$$E_{A,2}^{\Omega} = U_2 H_{A,2}^{\Omega} U_2^{\dagger} \quad U_2 = \begin{pmatrix} U_{2,P} & U_{2,PQ} \\ U_{2,QP} & U_{2,Q} \end{pmatrix} \quad E_{A,2}^{\Omega} = \begin{pmatrix} E_{A,2,P}^{\Omega} & 0 \\ 0 & E_{A,2,Q}^{\Omega} \end{pmatrix}$$

$$H_{A,2}^{N_{\rm max},\Omega,{\rm eff}} = \frac{U_{2,P}^{\dagger}}{\sqrt{U_{2,P}^{\dagger}U_{2,P}}} E_{A,2,P}^{\Omega} \frac{U_{2,P}}{\sqrt{U_{2,P}^{\dagger}U_{2,P}}}$$

Two ways of convergence:

- 1) For $P \rightarrow 1$ and fixed a: $H_{A,a=2}^{eff} \rightarrow H_A$
- 2) For a \rightarrow A and fixed P: $H_{A,a}^{eff} \rightarrow H_{A}$

- NCSM convergence test
 - Comparison to other methods

N³LO NN	NCSM	FY	НН
³ H	7.852(5)	7.854	7.854
⁴ He	25.39(1)	25.37	25.38

P. Navratil, INT Seminar, November 13, 2007, online

P. Navrátil and E. Caurier, Phys. Rev. C 69, 014311 (2004)

II. Ab Initio Shell Model with a Core Approach

From few-body to many-body

Using the NCSM to calculate the shell model input

Ab initio No Core Shell Model

Core Shell Model

Many-body experimental data

From few-body to many-body

Using the NCSM to calculate the shell model input

Ab initio No Core Shell Model

Core Shell Model

Many-body experimental data

Ab-initio shell model with a core

A. F. Lisetskiy, ^{1,*} B. R. Barrett, ¹ M. K. G. Kruse, ¹ P. Navratil, ² I. Stetcu, ³ and J. P. Vary ⁴
¹Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
²Lawrence Livermore National Laboratory, Livermore, California 94551, USA
³Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
⁴Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
(Received 20 June 2008; published 10 October 2008)

We construct effective two- and three-body Hamiltonians for the p-shell by performing $12\hbar\Omega$ ab initio no-core shell model (NCSM) calculations for A=6 and 7 nuclei and explicitly projecting the many-body Hamiltonians onto the $0\hbar\Omega$ space. We then separate these effective Hamiltonians into inert core, one- and two-body contributions (also three-body for A=7) and analyze the systematic behavior of these different parts as a function of the mass number A and size of the NCSM basis space. The role of effective three- and higher-body interactions for A>6 is investigated and discussed.

DOI: 10.1103/PhysRevC.78.044302 PACS number(s): 21.10.Hw, 21.60.Cs, 23.20.Lv, 27.20.+n

P. Navratil, M. Thoresen and B.R.B., Phys. Rev. C 55, R573 (1997)

FORMALISM

- 1. Perform a large basis NCSM for a core + 2N system, e.g., 18^F.
- 2. Use Okubo-Lee-Suzuki transformation to project these results into a single major shell to obtain effective 2-body matrix elements.
- 3. Separate these 2-body matrix elements into a core term, single-particle energies and residual 2-body interactions, i.e., the standard input for a normal Shell Model calculation.
- 4. Use these values for performing SM calculations in that shell.

Effective Hamiltonian for SSM

How to calculate the Shell Model 2-body effective interaction:

Two ways of convergence:

- 1) For P \rightarrow 1 and fixed a: $H_{A,a=2}^{eff} \rightarrow H_A$: previous slide
 - 2) For $a_1 \rightarrow A$ and fixed P_1 : $H^{eff}_{Aa1} \rightarrow H_A$

$$P_1 + Q_1 = P$$
; P_1 - small model space; Q_1 - excluded space;

$$\mathcal{H}_{A,a_1}^{N_{1,\max},N_{\max}} = \frac{U_{a_1,P_1}^{A,\dagger}}{\sqrt{U_{a_1,P_1}^{A,\dagger}U_{a_1,P_1}^A}} E_{A,a_1,P_1}^{N_{\max},\Omega} \frac{U_{a_1,P_1}^A}{\sqrt{U_{a_1,P_1}^{A,\dagger}U_{a_1,P_1}^A}}$$

Valence Cluster Expansion

 $N_{1,max} = 0$ space (p-space); $a_1 = A_C + a_V$; a_1 - order of cluster;

 ${\bf A}_{\rm c}\,$ - number of nucleons in core; ${\bf a}_{\rm v}\,$ - order of valence cluster;

$$\mathcal{H}_{A,a_1}^{0,N_{\text{max}}} = \sum_{k}^{a_{\text{v}}} V_k^{A,A_c+k}$$

III. Results: sd-shell nuclei

Accepted for publication in PRC

Ab initio effective interactions for sd-shell valence nucleons

E. Dikmen, 1, 2, * A. F. Lisetskiy, 2, † B. R. Barrett, 2, ‡ P. Maris, 3, § A. M. Shirokov, 3, 4, 5, ¶ and J. P. Vary 3, **

¹Department of Physics, Suleyman Demirel University, Isparta, Turkey ²Department of Physics, University of Arizona, Tucson, Arizona 85721

³Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011

⁴Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia
⁵Pacific National University, 136 Tikhookeanskaya st., Khabarovsk 680035, Russia

(Dated: February 3, 2015)

We perform ab initio no core shell model calculations for A=18 and 19 nuclei in a $4\hbar\Omega$, or $N_{\rm max}=4$, model space using the effective JISP16 and chiral N3LO nucleon-nucleon potentials and transform the many-body effective Hamiltonians into the $0\hbar\Omega$ model space to construct the A-body effective Hamiltonians in the sd-shell. We separate the A-body effective Hamiltonians with A=18 and A=19 into inert core, one- and two-body components. Then, we use these core, one- and two-body components to perform standard shell model calculations for the A=18 and A=19 systems with valence nucleons restricted to the sd-shell. Finally, we compare the standard shell model results in the $0\hbar\Omega$ model space with the exact no core shell model results in the $4\hbar\Omega$ model space for the A=18 and A=19 systems and find good agreement.

ArXiv: Nucl-th 1502.00700

Empirical Single-Particle Engrgies

Input: The results of $N_{max} = 4$ and hw = 14 MeV NCSM calculations

TABLE II: Proton and neutron single-particle energies (in MeV) for JISP16 effective interaction obtained for the mass of A=18 and A=19.

	A = 18			A = 19			
	$E_{\rm core} = -115.529$			$E_{\rm core} = -115.319$			
j_i	$\frac{1}{2}$	5 2	3 2	$\frac{1}{2}$	5 2	$\frac{3}{2}$	
$\epsilon_{j_i}^n$	-3.068	-2.270	6.262	-3.044	-2.248	6.289	
$\epsilon^p_{j_i}$	0.603	1.398	9.748	0.627	1.419	9.774	

TABLE III: Proton and neutron single-particle energies (in MeV) for chiral N3LO effective interaction obtained for the mass of A=18 and A=19.

	A = 18			A = 19		
	$E_{\text{core}} = -118.469$			$E_{\rm core} = -118.306$		
j_i	$\frac{1}{2}$	5 2	3 2	1/2	5 2	$\frac{3}{2}$
$\epsilon_{j_i}^n$	-3.638	-3.042	3.763	-3.625	-3.031	3.770
$\epsilon^p_{j_i}$	0.044	0.690	7.299	0.057	0.700	7.307

$$A = 18$$

$$A = 19$$

Coupled Cluster, E_core: -130.462 Idaho NN N3LO + 3N N2LO

-130.056

from G.R. Jansen et al. PRL 113, 142502 (2014)

IM-SRG, E_core: -130.132 Idaho NN N3LO + 3N N2LO -129.637

from H. Hergert private comm.

No-Core Shell-Model Approach

Next, add CM harmonic-oscillator Hamiltonian

$$H_{CM}^{HO} = \frac{\vec{P}^2}{2Am} + \frac{1}{2}Am\Omega^2\vec{R}^2; \quad \vec{R} = \frac{1}{A}\sum_{i=1}^{A}\vec{r}_i, \quad \vec{P} = Am\vec{R}$$

To H_A , yielding

$$H_A^{\Omega} = \sum_{i=1}^{A} \left[\frac{\vec{p}_i^2}{2m} + \frac{1}{2} m \Omega^2 \vec{r}_i^2 \right] + \underbrace{\sum_{i < j=1}^{A} \left[V_{NN} (\vec{r}_i - \vec{r}_j) - \frac{m \Omega^2}{2A} (\vec{r}_i - \vec{r}_j)^2 \right]}_{V_{ij}}$$

Defines a basis (i.e. HO) for evaluating

Preliminary Results

TABLE III: The NCSM energies (in MeV) of the lowest 28 states J_i^π of ¹⁸F calculated in $4\hbar\Omega$ model space using JISP16 and chiral N3LO NN interactions with $\hbar\Omega=14$ MeV.

$\frac{J_i^{\pi}}{1_1^+}$	T	JISP16	J_i^{π}	T	N3LO	
11+	0	-122.742	11+	0	-126.964	
3_{1}^{+}	0	-122.055	3_{1}^{+}	0	-126.214	
0_{1}^{+}	1	-121.320	0_{1}^{+}	1	-125.510	
5_{1}^{+}	0	-120.329	5_{1}^{+}	0	-124.545	
3_{1}^{+} 0_{1}^{+} 5_{1}^{+} 2_{2}^{+} 1_{2}^{+}	1	-119.505	5_{1}^{+} 2_{1}^{+} 2_{2}^{+} 1_{2}^{+}	1	-123.974	
2_{2}^{+}	0	-119.011	2_{2}^{+}	0	-123.890	
1_{2}^{+}	0	-118.709	1_{2}^{+}	0	-123.077	
0_{2}^{+}	1	-118.410	0_{2}^{+}	1	-122.586	
0_{2}^{+} 2_{3}^{+}	1	-117.211	2_{3}^{+}	1	-121.588	
3_{2}^{+} 4_{1}^{+}	1	-117.035	0_{2}^{+} 2_{3}^{+} 4_{1}^{+}	1	-121.512	
4_{1}^{+}	1	-117.004	3_{2}^{+}	1	-121.450	
3_{3}^{+}	0	-116.765	3_{3}^{+}	0	-121.376	
1_{3}^{+}	0	-113.565	1_{3}^{+}	0	-119.658	
4_{2}^{+} 2_{4}^{+}	0	-112.314	4_{2}^{+} 2_{4}^{+}	0	-118.656	
2_{4}^{+}	0	-111.899	2_{4}^{+}	0	-117.950	
1_{4}^{+}	0	-110.357	1_{4}^{+}	0	-116.106	
4_{3}^{+}	1	-109.625	4_{3}^{+}	1	-115.785	
2_{5}^{+}	1	-109.292	$2_{\rm g}^+$	1	-115.407	
1_{5}^{+}	1	-108.752	$4_3^+ \ 2_5^+ \ 3_4^+$	0	-115.309	
$\begin{array}{c} 1_4^+ \\ 4_3^+ \\ 2_5^+ \\ 1_5^+ \\ 3_4^+ \\ 2_6^+ \\ 1_6^+ \\ 2_7^+ \\ 3_5^+ \end{array}$	0	-108.706	$1_{\rm g}^+$	1	-114.870	
2_{6}^{+}	0	-108.485	2_{6}^{+}	0	-114.787	
1_{6}^{+}	1	-108.055	16+	1	-114.392	
2_{7}^{+}	1	-108.041	3_{5}^{+}	1	-114.258	
3_{5}^{+}	1	-107.874	2_{7}^{+}	1	-114.176	
3_{6}^{+}	0	-101.528	2_{6}^{+} 1_{6}^{+} 3_{5}^{+} 2_{7}^{+} 3_{6}^{+} 1_{7}^{+} 2_{8}^{+}	0	-109.316	
1_{7}^{+} 0_{3}^{+}	0	-99.946	1+	0	-107.798	
0_{3}^{+}	1	-99.848	2_{8}^{+}	1	-107.473	
2_{8}^{+}	1	-99.607	0_{3}^{+}	1	-107.436	

Comparison of effective TBMEs in the sd-shell: JISP16 vs USDA by Alex Brown et al.

Preliminary Results

PRELIMINARY RESULTS

Preliminary Results

Summary

Perform a converged NCSM calculation with a NN or NN+NNN interaction for a closed core + 2 valence nucleon system.

An OLS transformation of the results of the above NCSM calculation into a single major shell allows one to obtain core and single-particle energies and two-body residual matrix elements appropriate for shell model calculations in that shell, which have only a weak A-dependence.

The core and single-particle energies and two-body residual matrix elements obtained by this procedure can be used in Standard Shell Model calculations in the sd-shell, yielding results in good agreement with the full space NCSM results. The core and s.p. energies + 2-body effective interactions for A=18 give also good results for A=19 and 20.

Additional calculations are being performed with other NN interactions and for heavier nuclei in the sd-shell.

Two-body VCE for ⁶Li

With effective interaction for A=6!!!

$$H_{A=6,2}^{N_{
m max},\Omega,{
m eff}}$$

3-body Valence Cluster approximation for A>6

Construct 3-body interaction in terms of 3-body matrix elements: Yes

$$V_3^{A,7} = \mathcal{H}_{A,7}^{0,N_{\text{max}}} - \mathcal{H}_{A,6}^{0,N_{\text{max}}}$$

Chiral effective field theory (EFT) for nuclear forces

Separation of scales: low momenta $\frac{1}{\lambda} = Q$

3N

NN

 $\frac{1}{\lambda} = Q \ll \Lambda_{\rm b}$ breakdown scale $\Lambda_{\rm b}$

explains pheno hierarchy:

$$NN > 3N > 4N > \dots$$

NN-3N, π N, π π, electro-weak,... consistency

3N,4N: 2 new couplings to N³LO!

theoretical error estimates

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Meissner, Nogga, Machleidt,...A. Schwenk